| L(s) = 1 | − 2·3-s + 2·5-s + 3·9-s + 4·13-s − 4·15-s − 25-s − 4·27-s + 16·31-s + 20·37-s − 8·39-s − 12·41-s + 8·43-s + 6·45-s + 10·49-s + 20·53-s + 8·65-s − 24·67-s + 2·75-s + 32·79-s + 5·81-s + 8·83-s + 20·89-s − 32·93-s − 40·107-s − 40·111-s + 12·117-s + 18·121-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 0.894·5-s + 9-s + 1.10·13-s − 1.03·15-s − 1/5·25-s − 0.769·27-s + 2.87·31-s + 3.28·37-s − 1.28·39-s − 1.87·41-s + 1.21·43-s + 0.894·45-s + 10/7·49-s + 2.74·53-s + 0.992·65-s − 2.93·67-s + 0.230·75-s + 3.60·79-s + 5/9·81-s + 0.878·83-s + 2.11·89-s − 3.31·93-s − 3.86·107-s − 3.79·111-s + 1.10·117-s + 1.63·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.053070271\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.053070271\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31761260943870157738625025801, −9.944150576924295454554433021481, −9.316612297881715635610248252856, −9.311777268275246627115943639247, −8.481274652820164988815424914377, −8.234025792273744250414436771549, −7.64814639973234439515610557836, −7.24960040314863171584075486849, −6.53311196146945867908972306599, −6.32643152367091625855879949501, −5.85859111757882876564039662290, −5.81459289361072466628722626456, −4.89993980612448765572676202232, −4.72559186444712509004153418741, −4.02680326529006076127917706063, −3.64267859417867646092280427371, −2.54811782788153196829914844145, −2.38800983033393017202192271592, −1.18778929982582805162275796947, −0.884294251367325343545835127185,
0.884294251367325343545835127185, 1.18778929982582805162275796947, 2.38800983033393017202192271592, 2.54811782788153196829914844145, 3.64267859417867646092280427371, 4.02680326529006076127917706063, 4.72559186444712509004153418741, 4.89993980612448765572676202232, 5.81459289361072466628722626456, 5.85859111757882876564039662290, 6.32643152367091625855879949501, 6.53311196146945867908972306599, 7.24960040314863171584075486849, 7.64814639973234439515610557836, 8.234025792273744250414436771549, 8.481274652820164988815424914377, 9.311777268275246627115943639247, 9.316612297881715635610248252856, 9.944150576924295454554433021481, 10.31761260943870157738625025801