| L(s) = 1 | − 2·5-s + 9-s + 4·13-s + 4·17-s + 3·25-s + 4·29-s + 20·37-s + 20·41-s − 2·45-s − 14·49-s + 20·53-s + 4·61-s − 8·65-s + 20·73-s + 81-s − 8·85-s − 12·89-s + 4·97-s − 12·101-s − 28·109-s + 4·113-s + 4·117-s − 6·121-s − 4·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 1/3·9-s + 1.10·13-s + 0.970·17-s + 3/5·25-s + 0.742·29-s + 3.28·37-s + 3.12·41-s − 0.298·45-s − 2·49-s + 2.74·53-s + 0.512·61-s − 0.992·65-s + 2.34·73-s + 1/9·81-s − 0.867·85-s − 1.27·89-s + 0.406·97-s − 1.19·101-s − 2.68·109-s + 0.376·113-s + 0.369·117-s − 0.545·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.235701712\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.235701712\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.074746559817531846840486780032, −7.67749235610857150327119620769, −7.60125180356652570547951985370, −6.67875901406960725991694880905, −6.56365355473852823699216167747, −5.85130665991850657402735978605, −5.63406482120703248001185629214, −4.87700802399738744801917392626, −4.38871739502786245271092399731, −3.82349173075266898382654912582, −3.76558570458913747879946495025, −2.63252540175087701435373844808, −2.61544872003966305633910980827, −1.18815390030287753587945796282, −0.870154925974925884967934945032,
0.870154925974925884967934945032, 1.18815390030287753587945796282, 2.61544872003966305633910980827, 2.63252540175087701435373844808, 3.76558570458913747879946495025, 3.82349173075266898382654912582, 4.38871739502786245271092399731, 4.87700802399738744801917392626, 5.63406482120703248001185629214, 5.85130665991850657402735978605, 6.56365355473852823699216167747, 6.67875901406960725991694880905, 7.60125180356652570547951985370, 7.67749235610857150327119620769, 8.074746559817531846840486780032