| L(s) = 1 | + 2·5-s − 9-s + 4·13-s + 4·17-s + 3·25-s − 4·29-s + 12·37-s − 4·41-s − 2·45-s + 6·49-s + 20·53-s + 4·61-s + 8·65-s − 4·73-s + 81-s + 8·85-s − 12·89-s + 12·97-s + 12·101-s − 12·109-s − 4·113-s − 4·117-s − 6·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 0.894·5-s − 1/3·9-s + 1.10·13-s + 0.970·17-s + 3/5·25-s − 0.742·29-s + 1.97·37-s − 0.624·41-s − 0.298·45-s + 6/7·49-s + 2.74·53-s + 0.512·61-s + 0.992·65-s − 0.468·73-s + 1/9·81-s + 0.867·85-s − 1.27·89-s + 1.21·97-s + 1.19·101-s − 1.14·109-s − 0.376·113-s − 0.369·117-s − 0.545·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.803917852\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.803917852\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.197583128587011294573660454990, −7.75607362005887971566007526051, −7.28990729415394696222055218269, −6.80382813403846473025826771591, −6.29005983602675476263053442911, −5.85154189950553561868529735768, −5.60078284840423417456855955663, −5.18560884013015285113930661691, −4.47077099251116239108779577658, −3.86850844409555418989432301855, −3.53113048928162608318301357137, −2.71269144652642031556550384593, −2.35014419199254126013460628200, −1.47110145224388845847332462272, −0.855985849557055733700832379488,
0.855985849557055733700832379488, 1.47110145224388845847332462272, 2.35014419199254126013460628200, 2.71269144652642031556550384593, 3.53113048928162608318301357137, 3.86850844409555418989432301855, 4.47077099251116239108779577658, 5.18560884013015285113930661691, 5.60078284840423417456855955663, 5.85154189950553561868529735768, 6.29005983602675476263053442911, 6.80382813403846473025826771591, 7.28990729415394696222055218269, 7.75607362005887971566007526051, 8.197583128587011294573660454990