| L(s) = 1 | + 2·3-s + 2·5-s − 6·7-s + 3·9-s + 2·11-s + 4·15-s + 2·17-s + 2·19-s − 12·21-s − 10·23-s − 25-s + 4·27-s − 10·29-s + 4·33-s − 12·35-s + 6·45-s + 6·47-s + 18·49-s + 4·51-s + 12·53-s + 4·55-s + 4·57-s − 10·59-s − 10·61-s − 18·63-s − 20·69-s + 32·71-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 0.894·5-s − 2.26·7-s + 9-s + 0.603·11-s + 1.03·15-s + 0.485·17-s + 0.458·19-s − 2.61·21-s − 2.08·23-s − 1/5·25-s + 0.769·27-s − 1.85·29-s + 0.696·33-s − 2.02·35-s + 0.894·45-s + 0.875·47-s + 18/7·49-s + 0.560·51-s + 1.64·53-s + 0.539·55-s + 0.529·57-s − 1.30·59-s − 1.28·61-s − 2.26·63-s − 2.40·69-s + 3.79·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.585156365\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.585156365\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06380593436951729628552068151, −9.596604652362372587029276120305, −9.475812637329919046617796510225, −9.229320557790703480107608635861, −8.809182827774434211050864656263, −8.054119616210688932506063871974, −7.75396279651640104039603863617, −7.39747542274084604520690074712, −6.71102150224711344248417955574, −6.31881093001393539583585353049, −6.22012313833495938743976535894, −5.52838040023866753632566420717, −5.16895156674008812555779876914, −4.09889304521934073595707375657, −3.64641759743484616565197877150, −3.63993969524858877075223870528, −2.90790317134099167171652753252, −2.12087486332222650588068712656, −1.99279708649659521315490156290, −0.67714784877951478815740771660,
0.67714784877951478815740771660, 1.99279708649659521315490156290, 2.12087486332222650588068712656, 2.90790317134099167171652753252, 3.63993969524858877075223870528, 3.64641759743484616565197877150, 4.09889304521934073595707375657, 5.16895156674008812555779876914, 5.52838040023866753632566420717, 6.22012313833495938743976535894, 6.31881093001393539583585353049, 6.71102150224711344248417955574, 7.39747542274084604520690074712, 7.75396279651640104039603863617, 8.054119616210688932506063871974, 8.809182827774434211050864656263, 9.229320557790703480107608635861, 9.475812637329919046617796510225, 9.596604652362372587029276120305, 10.06380593436951729628552068151