Properties

Label 4-960e2-1.1-c1e2-0-13
Degree $4$
Conductor $921600$
Sign $1$
Analytic cond. $58.7620$
Root an. cond. $2.76868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·7-s + 9-s + 12·13-s − 16·19-s − 8·21-s + 25-s − 4·27-s + 8·31-s − 4·37-s + 24·39-s + 4·43-s − 2·49-s − 32·57-s − 4·61-s − 4·63-s + 12·67-s + 20·73-s + 2·75-s − 16·79-s − 11·81-s − 48·91-s + 16·93-s + 20·97-s + 4·103-s + 28·109-s − 8·111-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.51·7-s + 1/3·9-s + 3.32·13-s − 3.67·19-s − 1.74·21-s + 1/5·25-s − 0.769·27-s + 1.43·31-s − 0.657·37-s + 3.84·39-s + 0.609·43-s − 2/7·49-s − 4.23·57-s − 0.512·61-s − 0.503·63-s + 1.46·67-s + 2.34·73-s + 0.230·75-s − 1.80·79-s − 1.22·81-s − 5.03·91-s + 1.65·93-s + 2.03·97-s + 0.394·103-s + 2.68·109-s − 0.759·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(921600\)    =    \(2^{12} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(58.7620\)
Root analytic conductor: \(2.76868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 921600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.369748295\)
\(L(\frac12)\) \(\approx\) \(2.369748295\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.239480380770897255724570167213, −8.198425204155087916449678449322, −7.22523714288498578586167895314, −6.60040674980892955704654655808, −6.43994745928577778528949953628, −6.06254412327818625828699807195, −5.87904549724101637062073659041, −4.79631332498560161768109396865, −4.09416326053364009314265749502, −3.97804609056765892400553483994, −3.28314496469795666027926296042, −3.15160418737570888427061443506, −2.21397268061529340725377684972, −1.81188448910292297689023276847, −0.66259622561650473080382665441, 0.66259622561650473080382665441, 1.81188448910292297689023276847, 2.21397268061529340725377684972, 3.15160418737570888427061443506, 3.28314496469795666027926296042, 3.97804609056765892400553483994, 4.09416326053364009314265749502, 4.79631332498560161768109396865, 5.87904549724101637062073659041, 6.06254412327818625828699807195, 6.43994745928577778528949953628, 6.60040674980892955704654655808, 7.22523714288498578586167895314, 8.198425204155087916449678449322, 8.239480380770897255724570167213

Graph of the $Z$-function along the critical line