| L(s) = 1 | − 2·5-s − 9-s − 16·19-s − 25-s − 12·29-s − 16·31-s + 12·41-s + 2·45-s − 2·49-s + 12·61-s − 32·71-s + 16·79-s + 81-s + 20·89-s + 32·95-s − 28·101-s − 20·109-s − 22·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + 151-s + 32·155-s + ⋯ |
| L(s) = 1 | − 0.894·5-s − 1/3·9-s − 3.67·19-s − 1/5·25-s − 2.22·29-s − 2.87·31-s + 1.87·41-s + 0.298·45-s − 2/7·49-s + 1.53·61-s − 3.79·71-s + 1.80·79-s + 1/9·81-s + 2.11·89-s + 3.28·95-s − 2.78·101-s − 1.91·109-s − 2·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + 0.0813·151-s + 2.57·155-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 921600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.2455926919\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2455926919\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64850060700796335976412945783, −9.607208219231976433725115211268, −9.394678421765754159672368337067, −8.905018687839236489232280382765, −8.642078670759440273002308176787, −8.090390279095231022283058379342, −7.82183629161162015228831571411, −7.18003304867701248986155467700, −7.08846359940981139173983656037, −6.30416802823338848306496242264, −5.95244055282415037170098171972, −5.58818040200031538797964585924, −4.95724440158262981913659660265, −4.21277196913622945465291462509, −3.97662250264514243236257060979, −3.75090853826914515243862014037, −2.84630717782602778042152556299, −2.06337812407088477085389490074, −1.84133745744896749087931043353, −0.21657302174663672672792344698,
0.21657302174663672672792344698, 1.84133745744896749087931043353, 2.06337812407088477085389490074, 2.84630717782602778042152556299, 3.75090853826914515243862014037, 3.97662250264514243236257060979, 4.21277196913622945465291462509, 4.95724440158262981913659660265, 5.58818040200031538797964585924, 5.95244055282415037170098171972, 6.30416802823338848306496242264, 7.08846359940981139173983656037, 7.18003304867701248986155467700, 7.82183629161162015228831571411, 8.090390279095231022283058379342, 8.642078670759440273002308176787, 8.905018687839236489232280382765, 9.394678421765754159672368337067, 9.607208219231976433725115211268, 10.64850060700796335976412945783