Properties

Label 4-950e2-1.1-c3e2-0-0
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $3141.80$
Root an. cond. $7.48677$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 50·9-s − 40·11-s + 16·16-s + 38·19-s + 300·29-s − 400·31-s − 200·36-s − 436·41-s + 160·44-s + 542·49-s + 96·59-s − 268·61-s − 64·64-s − 1.04e3·71-s − 152·76-s − 1.96e3·79-s + 1.77e3·81-s − 1.34e3·89-s − 2.00e3·99-s − 2.90e3·101-s − 204·109-s − 1.20e3·116-s − 1.46e3·121-s + 1.60e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.85·9-s − 1.09·11-s + 1/4·16-s + 0.458·19-s + 1.92·29-s − 2.31·31-s − 0.925·36-s − 1.66·41-s + 0.548·44-s + 1.58·49-s + 0.211·59-s − 0.562·61-s − 1/8·64-s − 1.73·71-s − 0.229·76-s − 2.79·79-s + 2.42·81-s − 1.59·89-s − 2.03·99-s − 2.86·101-s − 0.179·109-s − 0.960·116-s − 1.09·121-s + 1.15·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3141.80\)
Root analytic conductor: \(7.48677\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.242543463\)
\(L(\frac12)\) \(\approx\) \(1.242543463\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 - p T )^{2} \)
good3$C_2^2$ \( 1 - 50 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 542 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 20 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4378 T^{2} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 8 p T + p^{3} T^{2} )( 1 + 8 p T + p^{3} T^{2} ) \)
23$C_2^2$ \( 1 - 22734 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 150 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 200 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 76970 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 218 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 97510 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 175246 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 292570 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 48 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 134 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 489970 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 520 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 p T + p^{3} T^{2} )( 1 + 16 p T + p^{3} T^{2} ) \)
79$C_2$ \( ( 1 + 980 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1119238 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 670 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 561970 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00680119397099416951034887447, −9.335412605397897888079242040363, −9.253971588312011306863996065350, −8.423319804463192113600298152818, −8.385449894472639760674298865620, −7.61272288859277580288664220435, −7.42143650074165131416463862982, −6.85692955742505895498820160955, −6.75666968290261896456473264749, −5.78025519074571187509642351892, −5.53367847717404774387777941741, −5.00524519247873051202993665167, −4.56000776921054146312112472072, −4.11004285251429375800000647808, −3.69345342151484724144080848080, −2.95195305480885345839012777033, −2.49479980694000286262715160334, −1.45863141572526765602674696460, −1.39225666168624050801992227113, −0.29357744761952592217075139028, 0.29357744761952592217075139028, 1.39225666168624050801992227113, 1.45863141572526765602674696460, 2.49479980694000286262715160334, 2.95195305480885345839012777033, 3.69345342151484724144080848080, 4.11004285251429375800000647808, 4.56000776921054146312112472072, 5.00524519247873051202993665167, 5.53367847717404774387777941741, 5.78025519074571187509642351892, 6.75666968290261896456473264749, 6.85692955742505895498820160955, 7.42143650074165131416463862982, 7.61272288859277580288664220435, 8.385449894472639760674298865620, 8.423319804463192113600298152818, 9.253971588312011306863996065350, 9.335412605397897888079242040363, 10.00680119397099416951034887447

Graph of the $Z$-function along the critical line