L(s) = 1 | − 4-s + 5·9-s + 4·11-s + 16-s + 2·19-s + 10·29-s − 16·31-s − 5·36-s − 16·41-s − 4·44-s + 5·49-s − 30·59-s + 4·61-s − 64-s + 4·71-s − 2·76-s + 20·79-s + 16·81-s + 20·99-s + 4·101-s + 30·109-s − 10·116-s − 10·121-s + 16·124-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 5/3·9-s + 1.20·11-s + 1/4·16-s + 0.458·19-s + 1.85·29-s − 2.87·31-s − 5/6·36-s − 2.49·41-s − 0.603·44-s + 5/7·49-s − 3.90·59-s + 0.512·61-s − 1/8·64-s + 0.474·71-s − 0.229·76-s + 2.25·79-s + 16/9·81-s + 2.01·99-s + 0.398·101-s + 2.87·109-s − 0.928·116-s − 0.909·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.220223572 |
L(21) |
≈ |
2.220223572 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 5 | | 1 |
| 19 | C1 | (1−T)2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 7 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C22 | 1−25T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 23 | C22 | 1−45T2+p2T4 |
| 29 | C2 | (1−5T+pT2)2 |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+8T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−105T2+p2T4 |
| 59 | C2 | (1+15T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C2 | (1−2T+pT2)2 |
| 73 | C22 | 1−65T2+p2T4 |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20686177070777993702787758356, −9.896540214040990582267120060212, −9.290777812594767207445269516254, −8.993274606774424378511424752687, −8.921527482239301520337262919554, −7.919176603635043067459351098544, −7.908104386178803227334811603934, −7.18071432601313327592947201680, −6.92435317740451826562152346022, −6.47540811791126218630180644646, −6.08546600481128978129866741152, −5.22989644326966415173770998739, −5.06327090117280067815267076119, −4.33044112260669478401994054540, −4.16604537503819153879657329221, −3.35882232367253671756552109964, −3.24569016120247373212380306101, −1.79230948075124349973494254521, −1.73532994630650044859878851120, −0.75062600675756926202476192265,
0.75062600675756926202476192265, 1.73532994630650044859878851120, 1.79230948075124349973494254521, 3.24569016120247373212380306101, 3.35882232367253671756552109964, 4.16604537503819153879657329221, 4.33044112260669478401994054540, 5.06327090117280067815267076119, 5.22989644326966415173770998739, 6.08546600481128978129866741152, 6.47540811791126218630180644646, 6.92435317740451826562152346022, 7.18071432601313327592947201680, 7.908104386178803227334811603934, 7.919176603635043067459351098544, 8.921527482239301520337262919554, 8.993274606774424378511424752687, 9.290777812594767207445269516254, 9.896540214040990582267120060212, 10.20686177070777993702787758356