L(s) = 1 | + 2·2-s − 3-s + 3·4-s − 5-s − 2·6-s + 7-s + 4·8-s − 2·10-s − 5·11-s − 3·12-s − 4·13-s + 2·14-s + 15-s + 5·16-s + 2·17-s + 2·19-s − 3·20-s − 21-s − 10·22-s − 8·23-s − 4·24-s − 8·26-s + 27-s + 3·28-s + 6·29-s + 2·30-s + 7·31-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 3/2·4-s − 0.447·5-s − 0.816·6-s + 0.377·7-s + 1.41·8-s − 0.632·10-s − 1.50·11-s − 0.866·12-s − 1.10·13-s + 0.534·14-s + 0.258·15-s + 5/4·16-s + 0.485·17-s + 0.458·19-s − 0.670·20-s − 0.218·21-s − 2.13·22-s − 1.66·23-s − 0.816·24-s − 1.56·26-s + 0.192·27-s + 0.566·28-s + 1.11·29-s + 0.365·30-s + 1.25·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.021650497\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.021650497\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 - T )^{2} \) |
| 3 | $C_2$ | \( 1 + T + T^{2} \) |
| 5 | $C_2$ | \( 1 + T + T^{2} \) |
| 31 | $C_2$ | \( 1 - 7 T + p T^{2} \) |
good | 7 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 + 5 T + 14 T^{2} + 5 p T^{3} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 37 | $C_2^2$ | \( 1 - 4 T - 21 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 4 T - 25 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 + 3 T - 44 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 + 3 T - 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2^2$ | \( 1 + 8 T - 7 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 73 | $C_2^2$ | \( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 9 T - 2 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 18 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27435505761476451009128576905, −10.26766778397209428236956838925, −9.679312627270711473262758799626, −9.040606803200149543593425769758, −8.223942431847154701535969405585, −8.107670220484163438870640559764, −7.55644136112322467177848497916, −7.40414112668966146621646301903, −6.77213598447190992149365961721, −6.12297997229029298466998079656, −5.94985397647227030359309795216, −5.37593847345605006537868557699, −4.91328561041160248966696011618, −4.70482354311543036645031617494, −4.15903527634336895777912034697, −3.58583723919905213035612411632, −2.70545766964029665005559027530, −2.68985758998949375222145606903, −1.83497885094960504484096930921, −0.65681548417145443507407451125,
0.65681548417145443507407451125, 1.83497885094960504484096930921, 2.68985758998949375222145606903, 2.70545766964029665005559027530, 3.58583723919905213035612411632, 4.15903527634336895777912034697, 4.70482354311543036645031617494, 4.91328561041160248966696011618, 5.37593847345605006537868557699, 5.94985397647227030359309795216, 6.12297997229029298466998079656, 6.77213598447190992149365961721, 7.40414112668966146621646301903, 7.55644136112322467177848497916, 8.107670220484163438870640559764, 8.223942431847154701535969405585, 9.040606803200149543593425769758, 9.679312627270711473262758799626, 10.26766778397209428236956838925, 10.27435505761476451009128576905