Properties

Label 4-925e2-1.1-c1e2-0-4
Degree $4$
Conductor $855625$
Sign $1$
Analytic cond. $54.5553$
Root an. cond. $2.71774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s − 4-s − 4·6-s + 6·7-s − 8·8-s + 2·9-s + 2·12-s − 4·13-s + 12·14-s − 7·16-s + 4·18-s + 6·19-s − 12·21-s + 16·23-s + 16·24-s − 8·26-s − 6·27-s − 6·28-s − 14·29-s + 6·31-s + 14·32-s − 2·36-s + 2·37-s + 12·38-s + 8·39-s − 24·42-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s − 1/2·4-s − 1.63·6-s + 2.26·7-s − 2.82·8-s + 2/3·9-s + 0.577·12-s − 1.10·13-s + 3.20·14-s − 7/4·16-s + 0.942·18-s + 1.37·19-s − 2.61·21-s + 3.33·23-s + 3.26·24-s − 1.56·26-s − 1.15·27-s − 1.13·28-s − 2.59·29-s + 1.07·31-s + 2.47·32-s − 1/3·36-s + 0.328·37-s + 1.94·38-s + 1.28·39-s − 3.70·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(855625\)    =    \(5^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(54.5553\)
Root analytic conductor: \(2.71774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 855625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008414201\)
\(L(\frac12)\) \(\approx\) \(2.008414201\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
37$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36064411301665304608862811310, −9.716834704066526040423319756452, −9.585596485488115110706128554659, −9.092096962415640318575093717439, −8.562738078495050675934083390182, −8.198988079779502516560133945599, −7.72421514620521137727135521916, −7.17555806445055832104720949487, −6.82110386031872740768304699598, −6.16533800907379519059950500906, −5.43443841568821475809739782313, −5.19772248993176353649746483620, −5.03574541911461831534542273599, −4.93441539089070830944985017230, −4.33800225605344126432721724490, −3.51225529781775833170540860983, −3.34474249918042278093347192068, −2.35822040831558650167755421969, −1.46757420986876449562073027714, −0.62730601236028749827165058491, 0.62730601236028749827165058491, 1.46757420986876449562073027714, 2.35822040831558650167755421969, 3.34474249918042278093347192068, 3.51225529781775833170540860983, 4.33800225605344126432721724490, 4.93441539089070830944985017230, 5.03574541911461831534542273599, 5.19772248993176353649746483620, 5.43443841568821475809739782313, 6.16533800907379519059950500906, 6.82110386031872740768304699598, 7.17555806445055832104720949487, 7.72421514620521137727135521916, 8.198988079779502516560133945599, 8.562738078495050675934083390182, 9.092096962415640318575093717439, 9.585596485488115110706128554659, 9.716834704066526040423319756452, 10.36064411301665304608862811310

Graph of the $Z$-function along the critical line