Properties

Label 4-924800-1.1-c1e2-0-15
Degree $4$
Conductor $924800$
Sign $-1$
Analytic cond. $58.9660$
Root an. cond. $2.77108$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 4·13-s − 4·17-s + 25-s − 4·29-s + 14·37-s + 7·41-s + 5·49-s − 14·53-s + 8·73-s − 8·81-s − 7·89-s − 16·97-s − 17·101-s + 4·109-s − 14·113-s − 4·117-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/3·9-s − 1.10·13-s − 0.970·17-s + 1/5·25-s − 0.742·29-s + 2.30·37-s + 1.09·41-s + 5/7·49-s − 1.92·53-s + 0.936·73-s − 8/9·81-s − 0.741·89-s − 1.62·97-s − 1.69·101-s + 0.383·109-s − 1.31·113-s − 0.369·117-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 924800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 924800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(924800\)    =    \(2^{7} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(58.9660\)
Root analytic conductor: \(2.77108\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 924800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 45 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2^2$ \( 1 - 99 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 127 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 89 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.924593177907785500372677988148, −7.52866822488644854254761580537, −7.06373863794213516956924276805, −6.70903495018879873125423571838, −6.12569219894906451470456209879, −5.80199239104966680798964356788, −5.11625466554608399276132302634, −4.76568599817200906991156370475, −4.12020160041934980204199435019, −4.00268805362714537076296008824, −2.92392306174499579307357179791, −2.63490172155744030430619103615, −1.98888418769162094945280934062, −1.13382755993602998072466405852, 0, 1.13382755993602998072466405852, 1.98888418769162094945280934062, 2.63490172155744030430619103615, 2.92392306174499579307357179791, 4.00268805362714537076296008824, 4.12020160041934980204199435019, 4.76568599817200906991156370475, 5.11625466554608399276132302634, 5.80199239104966680798964356788, 6.12569219894906451470456209879, 6.70903495018879873125423571838, 7.06373863794213516956924276805, 7.52866822488644854254761580537, 7.924593177907785500372677988148

Graph of the $Z$-function along the critical line