Properties

Label 4-9200e2-1.1-c1e2-0-12
Degree $4$
Conductor $84640000$
Sign $1$
Analytic cond. $5396.71$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 9-s + 2·11-s + 3·13-s + 7·17-s − 6·19-s + 21-s − 2·23-s + 7·29-s + 2·31-s − 2·33-s − 2·37-s − 3·39-s − 12·41-s − 3·43-s − 12·47-s − 9·49-s − 7·51-s + 10·53-s + 6·57-s − 8·59-s − 12·61-s + 63-s + 7·67-s + 2·69-s + 6·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 1/3·9-s + 0.603·11-s + 0.832·13-s + 1.69·17-s − 1.37·19-s + 0.218·21-s − 0.417·23-s + 1.29·29-s + 0.359·31-s − 0.348·33-s − 0.328·37-s − 0.480·39-s − 1.87·41-s − 0.457·43-s − 1.75·47-s − 9/7·49-s − 0.980·51-s + 1.37·53-s + 0.794·57-s − 1.04·59-s − 1.53·61-s + 0.125·63-s + 0.855·67-s + 0.240·69-s + 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84640000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(84640000\)    =    \(2^{8} \cdot 5^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(5396.71\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 84640000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 + T + 2 T^{2} + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + 10 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 - 3 T + 24 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 7 T + 42 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 - 7 T + 66 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 2 T + 46 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T + 58 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 12 T + 101 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 3 T + 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_4$ \( 1 - 10 T + 114 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$D_{4}$ \( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 7 T + 142 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T + 134 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 4 T + 133 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 3 T - 48 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 4 T + 153 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 21 T + 284 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45805055834973276415112160269, −7.16713834825860407270887220107, −6.70569435342780890354124176758, −6.46038430107011925615243600644, −6.12140244637848713431356986708, −6.09462505535339498007143195884, −5.40150038248284910150191119814, −5.27687932966146298568100798365, −4.80960700756797036913922381738, −4.41983261632235161774123662784, −4.03165442843343894093167900608, −3.60247979219192869265030069107, −3.18718823799585027484714742963, −3.08186573641713357111558218049, −2.41773900264012880943046415775, −1.83403424385472121079933898283, −1.32764384928443580921568721244, −1.14208435561055368084828906031, 0, 0, 1.14208435561055368084828906031, 1.32764384928443580921568721244, 1.83403424385472121079933898283, 2.41773900264012880943046415775, 3.08186573641713357111558218049, 3.18718823799585027484714742963, 3.60247979219192869265030069107, 4.03165442843343894093167900608, 4.41983261632235161774123662784, 4.80960700756797036913922381738, 5.27687932966146298568100798365, 5.40150038248284910150191119814, 6.09462505535339498007143195884, 6.12140244637848713431356986708, 6.46038430107011925615243600644, 6.70569435342780890354124176758, 7.16713834825860407270887220107, 7.45805055834973276415112160269

Graph of the $Z$-function along the critical line