Properties

Label 4-9200e2-1.1-c1e2-0-11
Degree $4$
Conductor $84640000$
Sign $1$
Analytic cond. $5396.71$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s − 9-s + 2·11-s − 3·13-s − 7·17-s − 6·19-s + 21-s + 2·23-s + 7·29-s + 2·31-s + 2·33-s + 2·37-s − 3·39-s − 12·41-s + 3·43-s + 12·47-s − 9·49-s − 7·51-s − 10·53-s − 6·57-s − 8·59-s − 12·61-s − 63-s − 7·67-s + 2·69-s + 6·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s − 1/3·9-s + 0.603·11-s − 0.832·13-s − 1.69·17-s − 1.37·19-s + 0.218·21-s + 0.417·23-s + 1.29·29-s + 0.359·31-s + 0.348·33-s + 0.328·37-s − 0.480·39-s − 1.87·41-s + 0.457·43-s + 1.75·47-s − 9/7·49-s − 0.980·51-s − 1.37·53-s − 0.794·57-s − 1.04·59-s − 1.53·61-s − 0.125·63-s − 0.855·67-s + 0.240·69-s + 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84640000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(84640000\)    =    \(2^{8} \cdot 5^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(5396.71\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 84640000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - T + 10 T^{2} - p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 3 T + 24 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 7 T + 42 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 - 7 T + 66 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 2 T + 46 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T + 58 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 12 T + 101 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 3 T + 50 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_4$ \( 1 + 10 T + 114 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$D_{4}$ \( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 7 T + 142 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T + 134 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 4 T + 133 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 3 T - 48 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T + 153 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 21 T + 284 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52866226868380152472541426917, −7.27092848330043864981750836766, −6.76939703877494470679295189402, −6.52687848430293233086844458956, −6.27655815112257022678716289887, −6.09322956478084460671637428084, −5.27977461887273242641463275075, −5.13527267941128173740538555806, −4.62017918192067456788682050577, −4.42834197617466056051188592375, −4.17606689321520368742281394589, −3.67055856411685739705624743794, −2.96345814534983309324567179457, −2.95535430058418892422802130602, −2.39848279691970269184132344148, −2.09085422950409717680777800459, −1.52993192763127064030013848171, −1.13576512018787292269590161908, 0, 0, 1.13576512018787292269590161908, 1.52993192763127064030013848171, 2.09085422950409717680777800459, 2.39848279691970269184132344148, 2.95535430058418892422802130602, 2.96345814534983309324567179457, 3.67055856411685739705624743794, 4.17606689321520368742281394589, 4.42834197617466056051188592375, 4.62017918192067456788682050577, 5.13527267941128173740538555806, 5.27977461887273242641463275075, 6.09322956478084460671637428084, 6.27655815112257022678716289887, 6.52687848430293233086844458956, 6.76939703877494470679295189402, 7.27092848330043864981750836766, 7.52866226868380152472541426917

Graph of the $Z$-function along the critical line