Properties

Label 4-912e2-1.1-c1e2-0-107
Degree $4$
Conductor $831744$
Sign $-1$
Analytic cond. $53.0327$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 6·7-s + 9-s − 8·13-s + 2·19-s + 12·21-s − 9·25-s − 4·27-s − 16·31-s − 20·37-s − 16·39-s + 14·43-s + 13·49-s + 4·57-s − 10·61-s + 6·63-s − 30·73-s − 18·75-s + 8·79-s − 11·81-s − 48·91-s − 32·93-s + 32·97-s + 28·103-s + 24·109-s − 40·111-s − 8·117-s + ⋯
L(s)  = 1  + 1.15·3-s + 2.26·7-s + 1/3·9-s − 2.21·13-s + 0.458·19-s + 2.61·21-s − 9/5·25-s − 0.769·27-s − 2.87·31-s − 3.28·37-s − 2.56·39-s + 2.13·43-s + 13/7·49-s + 0.529·57-s − 1.28·61-s + 0.755·63-s − 3.51·73-s − 2.07·75-s + 0.900·79-s − 1.22·81-s − 5.03·91-s − 3.31·93-s + 3.24·97-s + 2.75·103-s + 2.29·109-s − 3.79·111-s − 0.739·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(831744\)    =    \(2^{8} \cdot 3^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(53.0327\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 831744,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79236899027639545070642498110, −7.53818989363645791606962986645, −7.41110136347227768123475878009, −7.20024501520191211813153160377, −6.01501469952133530659188791248, −5.62405161804576690819108289841, −5.15976497091815013069726027465, −4.78246098563165761782711476378, −4.35808362404597816678481770906, −3.62617557238284773485534023353, −3.25598629803065603741482539939, −2.33036552779137826129420876510, −1.81707434889353167746748104685, −1.81226351589066908089801551987, 0, 1.81226351589066908089801551987, 1.81707434889353167746748104685, 2.33036552779137826129420876510, 3.25598629803065603741482539939, 3.62617557238284773485534023353, 4.35808362404597816678481770906, 4.78246098563165761782711476378, 5.15976497091815013069726027465, 5.62405161804576690819108289841, 6.01501469952133530659188791248, 7.20024501520191211813153160377, 7.41110136347227768123475878009, 7.53818989363645791606962986645, 7.79236899027639545070642498110

Graph of the $Z$-function along the critical line