Properties

Label 4-912e2-1.1-c1e2-0-0
Degree $4$
Conductor $831744$
Sign $1$
Analytic cond. $53.0327$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 4·15-s − 2·17-s − 6·19-s − 7·25-s + 4·27-s + 2·31-s − 2·45-s − 49-s + 4·51-s + 12·57-s − 2·59-s + 2·61-s − 8·67-s + 14·71-s + 14·73-s + 14·75-s − 16·79-s − 11·81-s + 4·85-s − 4·93-s + 12·95-s − 28·103-s − 24·107-s − 9·121-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.03·15-s − 0.485·17-s − 1.37·19-s − 7/5·25-s + 0.769·27-s + 0.359·31-s − 0.298·45-s − 1/7·49-s + 0.560·51-s + 1.58·57-s − 0.260·59-s + 0.256·61-s − 0.977·67-s + 1.66·71-s + 1.63·73-s + 1.61·75-s − 1.80·79-s − 1.22·81-s + 0.433·85-s − 0.414·93-s + 1.23·95-s − 2.75·103-s − 2.32·107-s − 0.818·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(831744\)    =    \(2^{8} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(53.0327\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 831744,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2761605546\)
\(L(\frac12)\) \(\approx\) \(0.2761605546\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
19$C_2$ \( 1 + 6 T + p T^{2} \)
good5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 37 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.192728714170956402737339872010, −7.82307053483805089684867818669, −7.31573250698658919178660427258, −6.70939417375030252544015898214, −6.46397349942181936038290244797, −6.07551337310252989429965529839, −5.42621860355612824043501757256, −5.16866250765144645597812064788, −4.43945814233442752744517093984, −4.10441092878549140339062261337, −3.74373412992296205235011459111, −2.85388904611726523196860864416, −2.27028111468721596056637040153, −1.40589042773190732408106565848, −0.27563242502208059945993766933, 0.27563242502208059945993766933, 1.40589042773190732408106565848, 2.27028111468721596056637040153, 2.85388904611726523196860864416, 3.74373412992296205235011459111, 4.10441092878549140339062261337, 4.43945814233442752744517093984, 5.16866250765144645597812064788, 5.42621860355612824043501757256, 6.07551337310252989429965529839, 6.46397349942181936038290244797, 6.70939417375030252544015898214, 7.31573250698658919178660427258, 7.82307053483805089684867818669, 8.192728714170956402737339872010

Graph of the $Z$-function along the critical line