Properties

Label 4-903168-1.1-c1e2-0-34
Degree $4$
Conductor $903168$
Sign $-1$
Analytic cond. $57.5867$
Root an. cond. $2.75474$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 9-s − 2·11-s + 4·23-s − 6·25-s − 12·29-s + 6·43-s − 3·49-s + 2·63-s − 6·67-s + 4·71-s − 4·77-s + 81-s − 2·99-s − 2·107-s − 8·109-s − 16·113-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 8·161-s + 163-s + ⋯
L(s)  = 1  + 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.834·23-s − 6/5·25-s − 2.22·29-s + 0.914·43-s − 3/7·49-s + 0.251·63-s − 0.733·67-s + 0.474·71-s − 0.455·77-s + 1/9·81-s − 0.201·99-s − 0.193·107-s − 0.766·109-s − 1.50·113-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.630·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(903168\)    =    \(2^{11} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(57.5867\)
Root analytic conductor: \(2.75474\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 903168,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
47$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73882147412229428951643322328, −7.65737738850666541781903901555, −7.28421241895817753531919095152, −6.59829414535044214615440020461, −6.20085890175188080216977104974, −5.53810613444637738503657017756, −5.29976584990241995095114328943, −4.86319513297136418573172317351, −4.06276329653288220995069375671, −3.94360424964697436535149909682, −3.14991609432970790421675009270, −2.48449338545099608920958917487, −1.89285363592943833878974170515, −1.26829161764185263592062550528, 0, 1.26829161764185263592062550528, 1.89285363592943833878974170515, 2.48449338545099608920958917487, 3.14991609432970790421675009270, 3.94360424964697436535149909682, 4.06276329653288220995069375671, 4.86319513297136418573172317351, 5.29976584990241995095114328943, 5.53810613444637738503657017756, 6.20085890175188080216977104974, 6.59829414535044214615440020461, 7.28421241895817753531919095152, 7.65737738850666541781903901555, 7.73882147412229428951643322328

Graph of the $Z$-function along the critical line