Properties

Label 4-903168-1.1-c1e2-0-22
Degree $4$
Conductor $903168$
Sign $-1$
Analytic cond. $57.5867$
Root an. cond. $2.75474$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 8·11-s − 4·17-s − 10·19-s − 2·25-s + 4·27-s − 16·33-s + 12·41-s − 12·43-s − 49-s + 8·51-s + 20·57-s + 14·59-s − 4·67-s − 12·73-s + 4·75-s − 11·81-s − 10·83-s + 8·89-s + 16·97-s + 8·99-s − 8·107-s + 4·113-s + 26·121-s − 24·123-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 2.41·11-s − 0.970·17-s − 2.29·19-s − 2/5·25-s + 0.769·27-s − 2.78·33-s + 1.87·41-s − 1.82·43-s − 1/7·49-s + 1.12·51-s + 2.64·57-s + 1.82·59-s − 0.488·67-s − 1.40·73-s + 0.461·75-s − 1.22·81-s − 1.09·83-s + 0.847·89-s + 1.62·97-s + 0.804·99-s − 0.773·107-s + 0.376·113-s + 2.36·121-s − 2.16·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(903168\)    =    \(2^{11} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(57.5867\)
Root analytic conductor: \(2.75474\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 903168,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.056046829545666874703724421529, −7.23825847434985008786092467133, −6.92350012506979572055111258127, −6.45660456938174818200867480598, −6.26685641768808272430261263019, −5.93748531640264652548242255626, −5.30294344081322495998967730745, −4.58077044621379342973063667196, −4.31934901513247275960207087580, −3.97866110572214522332153756236, −3.31521081303494035975598512057, −2.37074517208793522328749795219, −1.82490893418859332873477226891, −1.03422217455093447514352401670, 0, 1.03422217455093447514352401670, 1.82490893418859332873477226891, 2.37074517208793522328749795219, 3.31521081303494035975598512057, 3.97866110572214522332153756236, 4.31934901513247275960207087580, 4.58077044621379342973063667196, 5.30294344081322495998967730745, 5.93748531640264652548242255626, 6.26685641768808272430261263019, 6.45660456938174818200867480598, 6.92350012506979572055111258127, 7.23825847434985008786092467133, 8.056046829545666874703724421529

Graph of the $Z$-function along the critical line