Properties

Label 4-903168-1.1-c1e2-0-11
Degree $4$
Conductor $903168$
Sign $1$
Analytic cond. $57.5867$
Root an. cond. $2.75474$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 4·17-s + 10·25-s + 20·41-s + 49-s − 12·73-s + 81-s − 12·89-s + 4·97-s + 4·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1/3·9-s + 0.970·17-s + 2·25-s + 3.12·41-s + 1/7·49-s − 1.40·73-s + 1/9·81-s − 1.27·89-s + 0.406·97-s + 0.376·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 903168 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(903168\)    =    \(2^{11} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(57.5867\)
Root analytic conductor: \(2.75474\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 903168,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.379485087\)
\(L(\frac12)\) \(\approx\) \(2.379485087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110674600214935182591837786111, −7.68777075721350549329779009047, −7.36065624690128690729357359533, −6.87656563475161694100417575924, −6.47042216648252667631825659822, −5.84146862845359361159581780164, −5.57514292445825550953964891684, −4.99373212416093111996378694407, −4.39335908900817790862992778816, −4.15447785943120974004513704294, −3.33749488974001301593418704878, −2.89559339579450126544829770666, −2.36075478310483658718467340471, −1.39356665475025406658508629845, −0.808531723595620449146231322823, 0.808531723595620449146231322823, 1.39356665475025406658508629845, 2.36075478310483658718467340471, 2.89559339579450126544829770666, 3.33749488974001301593418704878, 4.15447785943120974004513704294, 4.39335908900817790862992778816, 4.99373212416093111996378694407, 5.57514292445825550953964891684, 5.84146862845359361159581780164, 6.47042216648252667631825659822, 6.87656563475161694100417575924, 7.36065624690128690729357359533, 7.68777075721350549329779009047, 8.110674600214935182591837786111

Graph of the $Z$-function along the critical line