Properties

Label 4-9016e2-1.1-c1e2-0-8
Degree $4$
Conductor $81288256$
Sign $1$
Analytic cond. $5183.00$
Root an. cond. $8.48487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 4·9-s + 4·11-s − 8·17-s − 4·19-s − 2·23-s + 4·25-s − 4·31-s + 4·37-s − 12·41-s + 16·43-s − 16·45-s − 12·47-s + 4·53-s + 16·55-s − 16·59-s + 12·61-s + 12·67-s − 8·71-s − 4·73-s + 4·79-s + 7·81-s − 4·83-s − 32·85-s − 16·89-s − 16·95-s − 16·99-s + ⋯
L(s)  = 1  + 1.78·5-s − 4/3·9-s + 1.20·11-s − 1.94·17-s − 0.917·19-s − 0.417·23-s + 4/5·25-s − 0.718·31-s + 0.657·37-s − 1.87·41-s + 2.43·43-s − 2.38·45-s − 1.75·47-s + 0.549·53-s + 2.15·55-s − 2.08·59-s + 1.53·61-s + 1.46·67-s − 0.949·71-s − 0.468·73-s + 0.450·79-s + 7/9·81-s − 0.439·83-s − 3.47·85-s − 1.69·89-s − 1.64·95-s − 1.60·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81288256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81288256 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(81288256\)    =    \(2^{6} \cdot 7^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(5183.00\)
Root analytic conductor: \(8.48487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 81288256,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
23$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - 4 T + 12 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 8 T + 48 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T + 64 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + 12 T + 128 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 4 T + 102 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 16 T + 132 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 12 T + 140 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 12 T + 138 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 8 T + 86 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 4 T + 78 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$C_4$ \( 1 - 4 T + 90 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 4 T + 162 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 16 T + 192 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60691621055889285999400314869, −6.92526640681535204601198178625, −6.66008065401982429643587860756, −6.64824591810639667729383856926, −6.08279296619129739130607474632, −6.02077556456350389879955155080, −5.51118019023620692117757661132, −5.32384900082566488607404224981, −4.89915319084540518884399473584, −4.31464090091669933490657822344, −4.02318440135931337362989621420, −3.85037123209990006653593276253, −3.04966215125812588893419773538, −2.75017303983036886175526833076, −2.21498743832620310756554232025, −2.18084514948185533162273487238, −1.51161320831097085566708581541, −1.25652271193843151499025816842, 0, 0, 1.25652271193843151499025816842, 1.51161320831097085566708581541, 2.18084514948185533162273487238, 2.21498743832620310756554232025, 2.75017303983036886175526833076, 3.04966215125812588893419773538, 3.85037123209990006653593276253, 4.02318440135931337362989621420, 4.31464090091669933490657822344, 4.89915319084540518884399473584, 5.32384900082566488607404224981, 5.51118019023620692117757661132, 6.02077556456350389879955155080, 6.08279296619129739130607474632, 6.64824591810639667729383856926, 6.66008065401982429643587860756, 6.92526640681535204601198178625, 7.60691621055889285999400314869

Graph of the $Z$-function along the critical line