L(s) = 1 | + 2·11-s + 2·29-s + 2·37-s − 2·43-s − 49-s − 2·53-s − 2·67-s − 81-s − 2·107-s − 2·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 2·11-s + 2·29-s + 2·37-s − 2·43-s − 49-s − 2·53-s − 2·67-s − 81-s − 2·107-s − 2·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.087605307\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.087605307\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43096756719523208032377652804, −10.12646156634763419906207487499, −9.466837397912958160309878311214, −9.457780361990515816240673801009, −8.898482236773261366700062761677, −8.482925147518149956285616867902, −7.906721637694024845984422229152, −7.81229612672820194244209303087, −6.83070471734107728099826645424, −6.74456999986489418142346205143, −6.23265098550158758680943743417, −6.05282413147094061700808480869, −5.08929932523714480970487642022, −4.83454051071575640101649654839, −4.07256301127090740614578750652, −4.01707793218408609635329984241, −2.96291420653715139077888087295, −2.87648605440487255235932315351, −1.62432983907612950363498786813, −1.28183308675642035097784966116,
1.28183308675642035097784966116, 1.62432983907612950363498786813, 2.87648605440487255235932315351, 2.96291420653715139077888087295, 4.01707793218408609635329984241, 4.07256301127090740614578750652, 4.83454051071575640101649654839, 5.08929932523714480970487642022, 6.05282413147094061700808480869, 6.23265098550158758680943743417, 6.74456999986489418142346205143, 6.83070471734107728099826645424, 7.81229612672820194244209303087, 7.906721637694024845984422229152, 8.482925147518149956285616867902, 8.898482236773261366700062761677, 9.457780361990515816240673801009, 9.466837397912958160309878311214, 10.12646156634763419906207487499, 10.43096756719523208032377652804