| L(s) = 1 | + 2·2-s + 3·3-s + 3·4-s − 5-s + 6·6-s − 2·7-s + 4·8-s + 4·9-s − 2·10-s + 9·12-s + 13-s − 4·14-s − 3·15-s + 5·16-s + 12·17-s + 8·18-s − 4·19-s − 3·20-s − 6·21-s − 3·23-s + 12·24-s − 6·25-s + 2·26-s + 6·27-s − 6·28-s − 3·29-s − 6·30-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.73·3-s + 3/2·4-s − 0.447·5-s + 2.44·6-s − 0.755·7-s + 1.41·8-s + 4/3·9-s − 0.632·10-s + 2.59·12-s + 0.277·13-s − 1.06·14-s − 0.774·15-s + 5/4·16-s + 2.91·17-s + 1.88·18-s − 0.917·19-s − 0.670·20-s − 1.30·21-s − 0.625·23-s + 2.44·24-s − 6/5·25-s + 0.392·26-s + 1.15·27-s − 1.13·28-s − 0.557·29-s − 1.09·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80174116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80174116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(15.96064518\) |
| \(L(\frac12)\) |
\(\approx\) |
\(15.96064518\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.85127799871097651693780737745, −7.71157866799394495605253979055, −7.29225082054417778499650203958, −6.68551520258095914812797496216, −6.66479809651979962489050042649, −6.22465368323738475170226821087, −5.74790021373330847389479407776, −5.37334396147741940951367562840, −5.30287619962338141236602974563, −4.67009263454832620181363519777, −4.10654327673380068897849834263, −3.88893333963176893407111324264, −3.62114167542665222126625851513, −3.40621621974509071652066146448, −2.90931643311250936308460054015, −2.76289523818575905946027685980, −2.02374908954706742347164089517, −1.99135083638354144818915967395, −1.17718697634270251882419943489, −0.61726113112337577104791094293,
0.61726113112337577104791094293, 1.17718697634270251882419943489, 1.99135083638354144818915967395, 2.02374908954706742347164089517, 2.76289523818575905946027685980, 2.90931643311250936308460054015, 3.40621621974509071652066146448, 3.62114167542665222126625851513, 3.88893333963176893407111324264, 4.10654327673380068897849834263, 4.67009263454832620181363519777, 5.30287619962338141236602974563, 5.37334396147741940951367562840, 5.74790021373330847389479407776, 6.22465368323738475170226821087, 6.66479809651979962489050042649, 6.68551520258095914812797496216, 7.29225082054417778499650203958, 7.71157866799394495605253979055, 7.85127799871097651693780737745