Properties

Label 4-882e2-1.1-c5e2-0-11
Degree 44
Conductor 777924777924
Sign 11
Analytic cond. 20010.520010.5
Root an. cond. 11.893611.8936
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 22

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 48·4-s − 53·5-s − 256·8-s + 424·10-s − 191·11-s + 379·13-s + 1.28e3·16-s − 340·17-s + 1.76e3·19-s − 2.54e3·20-s + 1.52e3·22-s − 3.23e3·23-s − 1.74e3·25-s − 3.03e3·26-s − 4.45e3·29-s − 1.99e3·31-s − 6.14e3·32-s + 2.72e3·34-s + 2.05e4·37-s − 1.41e4·38-s + 1.35e4·40-s + 8.81e3·41-s + 1.58e4·43-s − 9.16e3·44-s + 2.58e4·46-s + 3.39e4·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.948·5-s − 1.41·8-s + 1.34·10-s − 0.475·11-s + 0.621·13-s + 5/4·16-s − 0.285·17-s + 1.12·19-s − 1.42·20-s + 0.673·22-s − 1.27·23-s − 0.557·25-s − 0.879·26-s − 0.984·29-s − 0.372·31-s − 1.06·32-s + 0.403·34-s + 2.47·37-s − 1.58·38-s + 1.34·40-s + 0.818·41-s + 1.30·43-s − 0.713·44-s + 1.80·46-s + 2.23·47-s + ⋯

Functional equation

Λ(s)=(777924s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(777924s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 777924777924    =    2234742^{2} \cdot 3^{4} \cdot 7^{4}
Sign: 11
Analytic conductor: 20010.520010.5
Root analytic conductor: 11.893611.8936
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 22
Selberg data: (4, 777924, ( :5/2,5/2), 1)(4,\ 777924,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1+p2T)2 ( 1 + p^{2} T )^{2}
3 1 1
7 1 1
good5D4D_{4} 1+53T+4552T2+53p5T3+p10T4 1 + 53 T + 4552 T^{2} + 53 p^{5} T^{3} + p^{10} T^{4}
11D4D_{4} 1+191T+24656pT2+191p5T3+p10T4 1 + 191 T + 24656 p T^{2} + 191 p^{5} T^{3} + p^{10} T^{4}
13D4D_{4} 1379T+488066T2379p5T3+p10T4 1 - 379 T + 488066 T^{2} - 379 p^{5} T^{3} + p^{10} T^{4}
17D4D_{4} 1+20pT+1908514T2+20p6T3+p10T4 1 + 20 p T + 1908514 T^{2} + 20 p^{6} T^{3} + p^{10} T^{4}
19D4D_{4} 11769T+2083758T21769p5T3+p10T4 1 - 1769 T + 2083758 T^{2} - 1769 p^{5} T^{3} + p^{10} T^{4}
23D4D_{4} 1+3236T+15452206T2+3236p5T3+p10T4 1 + 3236 T + 15452206 T^{2} + 3236 p^{5} T^{3} + p^{10} T^{4}
29D4D_{4} 1+4459T+37061638T2+4459p5T3+p10T4 1 + 4459 T + 37061638 T^{2} + 4459 p^{5} T^{3} + p^{10} T^{4}
31D4D_{4} 1+1994T6304813T2+1994p5T3+p10T4 1 + 1994 T - 6304813 T^{2} + 1994 p^{5} T^{3} + p^{10} T^{4}
37D4D_{4} 120587T+238401006T220587p5T3+p10T4 1 - 20587 T + 238401006 T^{2} - 20587 p^{5} T^{3} + p^{10} T^{4}
41D4D_{4} 18814T+240678562T28814p5T3+p10T4 1 - 8814 T + 240678562 T^{2} - 8814 p^{5} T^{3} + p^{10} T^{4}
43D4D_{4} 115853T+338678796T215853p5T3+p10T4 1 - 15853 T + 338678796 T^{2} - 15853 p^{5} T^{3} + p^{10} T^{4}
47D4D_{4} 133912T+687783466T233912p5T3+p10T4 1 - 33912 T + 687783466 T^{2} - 33912 p^{5} T^{3} + p^{10} T^{4}
53D4D_{4} 1+49239T+1320998110T2+49239p5T3+p10T4 1 + 49239 T + 1320998110 T^{2} + 49239 p^{5} T^{3} + p^{10} T^{4}
59D4D_{4} 1+56735T+2230528834T2+56735p5T3+p10T4 1 + 56735 T + 2230528834 T^{2} + 56735 p^{5} T^{3} + p^{10} T^{4}
61D4D_{4} 1+67508T+2826067262T2+67508p5T3+p10T4 1 + 67508 T + 2826067262 T^{2} + 67508 p^{5} T^{3} + p^{10} T^{4}
67D4D_{4} 175723T+3861149404T275723p5T3+p10T4 1 - 75723 T + 3861149404 T^{2} - 75723 p^{5} T^{3} + p^{10} T^{4}
71D4D_{4} 18992T681216182T28992p5T3+p10T4 1 - 8992 T - 681216182 T^{2} - 8992 p^{5} T^{3} + p^{10} T^{4}
73D4D_{4} 13201T+2311013380T23201p5T3+p10T4 1 - 3201 T + 2311013380 T^{2} - 3201 p^{5} T^{3} + p^{10} T^{4}
79D4D_{4} 126612T+3997648985T226612p5T3+p10T4 1 - 26612 T + 3997648985 T^{2} - 26612 p^{5} T^{3} + p^{10} T^{4}
83D4D_{4} 1+949T+367057696T2+949p5T3+p10T4 1 + 949 T + 367057696 T^{2} + 949 p^{5} T^{3} + p^{10} T^{4}
89D4D_{4} 1176562T+18855802834T2176562p5T3+p10T4 1 - 176562 T + 18855802834 T^{2} - 176562 p^{5} T^{3} + p^{10} T^{4}
97D4D_{4} 1129423T+11942811256T2129423p5T3+p10T4 1 - 129423 T + 11942811256 T^{2} - 129423 p^{5} T^{3} + p^{10} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.122967579408345301105672359664, −9.028836540491247939619092079475, −8.055112854525507532072218935418, −7.87488213768432862565109879127, −7.60495344669563393371368526228, −7.59986802901357946926291486359, −6.70346829860673560579288455765, −6.18638740186039916205990629628, −5.88171352231280897524639204479, −5.51679574437906724904096269878, −4.49425724696113673905834650185, −4.33068137825321978997266489929, −3.50311526236590679312837458846, −3.30090166998639905152420973040, −2.33876026178801805805615635408, −2.21931967658440275607589337776, −1.21058453152264209795029917407, −0.946722620384081625664183226747, 0, 0, 0.946722620384081625664183226747, 1.21058453152264209795029917407, 2.21931967658440275607589337776, 2.33876026178801805805615635408, 3.30090166998639905152420973040, 3.50311526236590679312837458846, 4.33068137825321978997266489929, 4.49425724696113673905834650185, 5.51679574437906724904096269878, 5.88171352231280897524639204479, 6.18638740186039916205990629628, 6.70346829860673560579288455765, 7.59986802901357946926291486359, 7.60495344669563393371368526228, 7.87488213768432862565109879127, 8.055112854525507532072218935418, 9.028836540491247939619092079475, 9.122967579408345301105672359664

Graph of the ZZ-function along the critical line