Properties

Label 4-882e2-1.1-c1e2-0-47
Degree $4$
Conductor $777924$
Sign $-1$
Analytic cond. $49.6011$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s + 6·11-s − 16-s + 6·22-s − 2·23-s + 4·25-s − 8·29-s + 5·32-s − 16·43-s − 6·44-s − 2·46-s + 4·50-s − 8·53-s − 8·58-s + 7·64-s − 20·67-s + 2·71-s − 12·79-s − 16·86-s − 18·88-s + 2·92-s − 4·100-s − 8·106-s + 6·107-s − 8·109-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1.80·11-s − 1/4·16-s + 1.27·22-s − 0.417·23-s + 4/5·25-s − 1.48·29-s + 0.883·32-s − 2.43·43-s − 0.904·44-s − 0.294·46-s + 0.565·50-s − 1.09·53-s − 1.05·58-s + 7/8·64-s − 2.44·67-s + 0.237·71-s − 1.35·79-s − 1.72·86-s − 1.91·88-s + 0.208·92-s − 2/5·100-s − 0.777·106-s + 0.580·107-s − 0.766·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(777924\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(49.6011\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 777924,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 156 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110244290700951261235418325054, −7.51481485643188820316858075483, −7.07141742808539722513764664794, −6.51198773994269405147540523122, −6.24524373900082075636946024781, −5.79683819446981297483644091898, −5.18496159484992186455362015020, −4.78382366782686739394694361341, −4.25097251576206945983178090130, −3.83911261375137372659619105488, −3.35740605144572352369985534493, −2.90149719559107386221934521898, −1.84845573334673391865245762722, −1.29974486145904636586531470782, 0, 1.29974486145904636586531470782, 1.84845573334673391865245762722, 2.90149719559107386221934521898, 3.35740605144572352369985534493, 3.83911261375137372659619105488, 4.25097251576206945983178090130, 4.78382366782686739394694361341, 5.18496159484992186455362015020, 5.79683819446981297483644091898, 6.24524373900082075636946024781, 6.51198773994269405147540523122, 7.07141742808539722513764664794, 7.51481485643188820316858075483, 8.110244290700951261235418325054

Graph of the $Z$-function along the critical line