| L(s) = 1 | − 2-s + 3·3-s + 3·5-s − 3·6-s + 8-s + 6·9-s − 3·10-s + 3·11-s − 5·13-s + 9·15-s − 16-s + 6·17-s − 6·18-s + 10·19-s − 3·22-s + 3·23-s + 3·24-s + 5·25-s + 5·26-s + 9·27-s + 3·29-s − 9·30-s + 4·31-s + 9·33-s − 6·34-s − 14·37-s − 10·38-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1.73·3-s + 1.34·5-s − 1.22·6-s + 0.353·8-s + 2·9-s − 0.948·10-s + 0.904·11-s − 1.38·13-s + 2.32·15-s − 1/4·16-s + 1.45·17-s − 1.41·18-s + 2.29·19-s − 0.639·22-s + 0.625·23-s + 0.612·24-s + 25-s + 0.980·26-s + 1.73·27-s + 0.557·29-s − 1.64·30-s + 0.718·31-s + 1.56·33-s − 1.02·34-s − 2.30·37-s − 1.62·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.100782575\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.100782575\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.858940463072466950650768035008, −9.833969949560615810373674139956, −9.490487128299676456524541004090, −9.185203477159087046309975393721, −8.932814381194564121741436678409, −8.230916528597595630748826748176, −7.78640788603460814807806284943, −7.71200222627466327012996492541, −6.94367835896478384319121548641, −6.83249644316601599513517718260, −6.15557701072660678744916743202, −5.27307644448224853393787628935, −5.18138152338355348879699508332, −4.64981015163431147105152991101, −3.66251987396276502763379907594, −3.36968975924260278622053546074, −2.81547609248212821861227976836, −2.30747683987178231865979425522, −1.42417440618217069832351905031, −1.23848234007064724663287252461,
1.23848234007064724663287252461, 1.42417440618217069832351905031, 2.30747683987178231865979425522, 2.81547609248212821861227976836, 3.36968975924260278622053546074, 3.66251987396276502763379907594, 4.64981015163431147105152991101, 5.18138152338355348879699508332, 5.27307644448224853393787628935, 6.15557701072660678744916743202, 6.83249644316601599513517718260, 6.94367835896478384319121548641, 7.71200222627466327012996492541, 7.78640788603460814807806284943, 8.230916528597595630748826748176, 8.932814381194564121741436678409, 9.185203477159087046309975393721, 9.490487128299676456524541004090, 9.833969949560615810373674139956, 9.858940463072466950650768035008