Properties

Label 4-882e2-1.1-c1e2-0-32
Degree $4$
Conductor $777924$
Sign $1$
Analytic cond. $49.6011$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·5-s + 8-s − 3·10-s + 3·11-s − 4·13-s − 16-s + 6·17-s + 2·19-s − 3·22-s + 6·23-s + 5·25-s + 4·26-s + 18·29-s − 7·31-s − 6·34-s + 10·37-s − 2·38-s + 3·40-s − 8·43-s − 6·46-s + 12·47-s − 5·50-s + 3·53-s + 9·55-s − 18·58-s − 3·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.34·5-s + 0.353·8-s − 0.948·10-s + 0.904·11-s − 1.10·13-s − 1/4·16-s + 1.45·17-s + 0.458·19-s − 0.639·22-s + 1.25·23-s + 25-s + 0.784·26-s + 3.34·29-s − 1.25·31-s − 1.02·34-s + 1.64·37-s − 0.324·38-s + 0.474·40-s − 1.21·43-s − 0.884·46-s + 1.75·47-s − 0.707·50-s + 0.412·53-s + 1.21·55-s − 2.36·58-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(777924\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(49.6011\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 777924,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.173708473\)
\(L(\frac12)\) \(\approx\) \(2.173708473\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 12 T + 97 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 3 T - 44 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 3 T - 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 4 T - 45 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 2 T - 63 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 2 T - 69 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 5 T - 54 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 6 T - 53 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06502239234059846024934120753, −9.914596816739796655964406422655, −9.621097700032801685287275279727, −9.167106426148207105421252136291, −8.658877678390949271719062878088, −8.563048714366870042694140334932, −7.64066317557623715206834195122, −7.56376278038186079532245472403, −6.83721184947006595217123994578, −6.67861577314183203538960806192, −5.87141457385585522235718061394, −5.76352586846298603187543162755, −4.95322795892157370763371436472, −4.79081928730827179568301296600, −4.12030687197011669242125277882, −3.21730886961047019684902764107, −2.83615087649566079448549012224, −2.22817976872039375862690908606, −1.27769304516479923611064999072, −0.971510353541376040801985068443, 0.971510353541376040801985068443, 1.27769304516479923611064999072, 2.22817976872039375862690908606, 2.83615087649566079448549012224, 3.21730886961047019684902764107, 4.12030687197011669242125277882, 4.79081928730827179568301296600, 4.95322795892157370763371436472, 5.76352586846298603187543162755, 5.87141457385585522235718061394, 6.67861577314183203538960806192, 6.83721184947006595217123994578, 7.56376278038186079532245472403, 7.64066317557623715206834195122, 8.563048714366870042694140334932, 8.658877678390949271719062878088, 9.167106426148207105421252136291, 9.621097700032801685287275279727, 9.914596816739796655964406422655, 10.06502239234059846024934120753

Graph of the $Z$-function along the critical line