| L(s) = 1 | − 2-s + 8-s + 8·13-s − 16-s − 6·17-s + 2·19-s + 5·25-s − 8·26-s + 12·29-s − 4·31-s + 6·34-s − 2·37-s − 2·38-s + 12·41-s + 16·43-s + 12·47-s − 5·50-s + 6·53-s − 12·58-s + 6·59-s + 8·61-s + 4·62-s + 64-s + 4·67-s + 2·73-s + 2·74-s − 8·79-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.353·8-s + 2.21·13-s − 1/4·16-s − 1.45·17-s + 0.458·19-s + 25-s − 1.56·26-s + 2.22·29-s − 0.718·31-s + 1.02·34-s − 0.328·37-s − 0.324·38-s + 1.87·41-s + 2.43·43-s + 1.75·47-s − 0.707·50-s + 0.824·53-s − 1.57·58-s + 0.781·59-s + 1.02·61-s + 0.508·62-s + 1/8·64-s + 0.488·67-s + 0.234·73-s + 0.232·74-s − 0.900·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.682449691\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.682449691\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39247262359629443990942940583, −10.03458217196504737449000820073, −9.174995102540854900453790019561, −9.077121502901718740174244911167, −8.657303558006121919107339150908, −8.584248611012648524612602635586, −7.82916649232246112174780567500, −7.50832315445137166254741236384, −6.86895803606696537734860737541, −6.63343478235961428792921448827, −5.91763966675191839057885172732, −5.83842875049177632595080084384, −5.01874547052489253303943963197, −4.47193653024812030918892525950, −3.96201716102204789433231923865, −3.67099487377760487735754976729, −2.58645387986878904012478155109, −2.44197013065682108198827134917, −1.13998151026283401648955805326, −0.905061614027266334376927730819,
0.905061614027266334376927730819, 1.13998151026283401648955805326, 2.44197013065682108198827134917, 2.58645387986878904012478155109, 3.67099487377760487735754976729, 3.96201716102204789433231923865, 4.47193653024812030918892525950, 5.01874547052489253303943963197, 5.83842875049177632595080084384, 5.91763966675191839057885172732, 6.63343478235961428792921448827, 6.86895803606696537734860737541, 7.50832315445137166254741236384, 7.82916649232246112174780567500, 8.584248611012648524612602635586, 8.657303558006121919107339150908, 9.077121502901718740174244911167, 9.174995102540854900453790019561, 10.03458217196504737449000820073, 10.39247262359629443990942940583