| L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 10·11-s + 5·16-s + 20·22-s + 8·23-s − 9·25-s + 10·29-s − 6·32-s − 8·37-s + 4·43-s − 30·44-s − 16·46-s + 18·50-s + 18·53-s − 20·58-s + 7·64-s − 4·67-s − 4·71-s + 16·74-s + 6·79-s − 8·86-s + 40·88-s + 24·92-s − 27·100-s − 36·106-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s − 3.01·11-s + 5/4·16-s + 4.26·22-s + 1.66·23-s − 9/5·25-s + 1.85·29-s − 1.06·32-s − 1.31·37-s + 0.609·43-s − 4.52·44-s − 2.35·46-s + 2.54·50-s + 2.47·53-s − 2.62·58-s + 7/8·64-s − 0.488·67-s − 0.474·71-s + 1.85·74-s + 0.675·79-s − 0.862·86-s + 4.26·88-s + 2.50·92-s − 2.69·100-s − 3.49·106-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.238671890386923809123178878617, −7.69780043471093435649583790995, −7.21435528320358379927581416164, −7.08055487724091789981125828654, −6.38468865530543948344255312711, −5.71619227739785613107965984191, −5.43475276494163016869526953658, −5.01953856335493271435920798157, −4.36865869014622242250082301422, −3.49120843004488869714011425140, −2.81104469657788282313974403144, −2.57919957316952716799921143645, −1.94506082349214662942482411882, −0.880626761328028180035180249034, 0,
0.880626761328028180035180249034, 1.94506082349214662942482411882, 2.57919957316952716799921143645, 2.81104469657788282313974403144, 3.49120843004488869714011425140, 4.36865869014622242250082301422, 5.01953856335493271435920798157, 5.43475276494163016869526953658, 5.71619227739785613107965984191, 6.38468865530543948344255312711, 7.08055487724091789981125828654, 7.21435528320358379927581416164, 7.69780043471093435649583790995, 8.238671890386923809123178878617