Properties

Label 4-882e2-1.1-c1e2-0-14
Degree $4$
Conductor $777924$
Sign $1$
Analytic cond. $49.6011$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 16-s + 6·25-s + 12·37-s − 8·43-s − 64-s + 8·67-s − 16·79-s − 6·100-s + 28·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s − 12·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 8·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 1/2·4-s + 1/4·16-s + 6/5·25-s + 1.97·37-s − 1.21·43-s − 1/8·64-s + 0.977·67-s − 1.80·79-s − 3/5·100-s + 2.68·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.986·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.609·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(777924\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(49.6011\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 777924,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.619405748\)
\(L(\frac12)\) \(\approx\) \(1.619405748\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.a_ag
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \) 2.11.a_ag
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.a_k
17$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.17.a_bi
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.a_w
23$C_2$ \( ( 1 - p T^{2} )^{2} \) 2.23.a_abu
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \) 2.29.a_acc
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.a_ac
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.37.am_eg
41$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.41.a_de
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.43.i_dy
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.47.a_be
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \) 2.53.a_ag
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.a_dy
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.61.a_ec
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.67.ai_fu
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \) 2.71.a_ada
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.73.a_aeg
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.79.q_io
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.a_w
89$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.89.a_ek
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.97.a_fa
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.398849099956833726775236437919, −7.76752815736893353324839052828, −7.50187266985755798607587166952, −6.88293208942419042961104433416, −6.47983023029038990633058086104, −6.05214728210047847556171240758, −5.44061851905305088912546483068, −5.08583120403786989026395522168, −4.46184943290431889648763588930, −4.20921767583215830349298452401, −3.43400963214967914847728097816, −2.98094860227912260151071609587, −2.34697890452780562240010188319, −1.48450383355799935765298697308, −0.65416913256320426770634956115, 0.65416913256320426770634956115, 1.48450383355799935765298697308, 2.34697890452780562240010188319, 2.98094860227912260151071609587, 3.43400963214967914847728097816, 4.20921767583215830349298452401, 4.46184943290431889648763588930, 5.08583120403786989026395522168, 5.44061851905305088912546483068, 6.05214728210047847556171240758, 6.47983023029038990633058086104, 6.88293208942419042961104433416, 7.50187266985755798607587166952, 7.76752815736893353324839052828, 8.398849099956833726775236437919

Graph of the $Z$-function along the critical line