| L(s) = 1 | − 4-s + 16-s + 6·25-s + 12·37-s − 8·43-s − 64-s + 8·67-s − 16·79-s − 6·100-s + 28·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s − 12·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 8·172-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
| L(s) = 1 | − 1/2·4-s + 1/4·16-s + 6/5·25-s + 1.97·37-s − 1.21·43-s − 1/8·64-s + 0.977·67-s − 1.80·79-s − 3/5·100-s + 2.68·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.986·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.609·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.619405748\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.619405748\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.398849099956833726775236437919, −7.76752815736893353324839052828, −7.50187266985755798607587166952, −6.88293208942419042961104433416, −6.47983023029038990633058086104, −6.05214728210047847556171240758, −5.44061851905305088912546483068, −5.08583120403786989026395522168, −4.46184943290431889648763588930, −4.20921767583215830349298452401, −3.43400963214967914847728097816, −2.98094860227912260151071609587, −2.34697890452780562240010188319, −1.48450383355799935765298697308, −0.65416913256320426770634956115,
0.65416913256320426770634956115, 1.48450383355799935765298697308, 2.34697890452780562240010188319, 2.98094860227912260151071609587, 3.43400963214967914847728097816, 4.20921767583215830349298452401, 4.46184943290431889648763588930, 5.08583120403786989026395522168, 5.44061851905305088912546483068, 6.05214728210047847556171240758, 6.47983023029038990633058086104, 6.88293208942419042961104433416, 7.50187266985755798607587166952, 7.76752815736893353324839052828, 8.398849099956833726775236437919