Properties

Label 4-8788-1.1-c1e2-0-2
Degree $4$
Conductor $8788$
Sign $-1$
Analytic cond. $0.560330$
Root an. cond. $0.865189$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 3·4-s − 4·5-s − 8·6-s − 2·7-s + 4·8-s + 7·9-s − 8·10-s − 2·11-s − 12·12-s − 13-s − 4·14-s + 16·15-s + 5·16-s − 6·17-s + 14·18-s − 12·20-s + 8·21-s − 4·22-s + 2·23-s − 16·24-s + 3·25-s − 2·26-s − 4·27-s − 6·28-s + 2·29-s + ⋯
L(s)  = 1  + 1.41·2-s − 2.30·3-s + 3/2·4-s − 1.78·5-s − 3.26·6-s − 0.755·7-s + 1.41·8-s + 7/3·9-s − 2.52·10-s − 0.603·11-s − 3.46·12-s − 0.277·13-s − 1.06·14-s + 4.13·15-s + 5/4·16-s − 1.45·17-s + 3.29·18-s − 2.68·20-s + 1.74·21-s − 0.852·22-s + 0.417·23-s − 3.26·24-s + 3/5·25-s − 0.392·26-s − 0.769·27-s − 1.13·28-s + 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8788\)    =    \(2^{2} \cdot 13^{3}\)
Sign: $-1$
Analytic conductor: \(0.560330\)
Root analytic conductor: \(0.865189\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 8788,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
13$C_1$ \( 1 + T \)
good3$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.7401598333, −16.2105519665, −16.1610422211, −15.4425168943, −15.3407982120, −14.7871828532, −13.5922863880, −13.5230676379, −12.6948580012, −12.1499536241, −12.0906172632, −11.4971267324, −11.1734099077, −10.6571590377, −10.2802576297, −9.14676247888, −8.14577120022, −7.45985560668, −6.89586188103, −6.28038385959, −5.88908450916, −4.97317601948, −4.61153453491, −3.91117219162, −2.87766967615, 0, 2.87766967615, 3.91117219162, 4.61153453491, 4.97317601948, 5.88908450916, 6.28038385959, 6.89586188103, 7.45985560668, 8.14577120022, 9.14676247888, 10.2802576297, 10.6571590377, 11.1734099077, 11.4971267324, 12.0906172632, 12.1499536241, 12.6948580012, 13.5230676379, 13.5922863880, 14.7871828532, 15.3407982120, 15.4425168943, 16.1610422211, 16.2105519665, 16.7401598333

Graph of the $Z$-function along the critical line