L(s) = 1 | − 6·3-s + 4-s + 21·9-s − 6·12-s − 13-s + 16-s − 6·17-s − 8·23-s − 9·25-s − 54·27-s + 4·29-s + 21·36-s + 6·39-s − 10·43-s − 6·48-s − 13·49-s + 36·51-s − 52-s + 24·53-s − 16·61-s + 64-s − 6·68-s + 48·69-s + 54·75-s − 8·79-s + 108·81-s − 24·87-s + ⋯ |
L(s) = 1 | − 3.46·3-s + 1/2·4-s + 7·9-s − 1.73·12-s − 0.277·13-s + 1/4·16-s − 1.45·17-s − 1.66·23-s − 9/5·25-s − 10.3·27-s + 0.742·29-s + 7/2·36-s + 0.960·39-s − 1.52·43-s − 0.866·48-s − 1.85·49-s + 5.04·51-s − 0.138·52-s + 3.29·53-s − 2.04·61-s + 1/8·64-s − 0.727·68-s + 5.77·69-s + 6.23·75-s − 0.900·79-s + 12·81-s − 2.57·87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 13 | $C_1$ | \( 1 + T \) |
good | 3 | $C_2$ | \( ( 1 + p T + p T^{2} )^{2} \) |
| 5 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49712673239204411601833482255, −11.04319412119313584483866781888, −10.28025762974353066563394220777, −10.24325458310862263428196114864, −9.539278397314208258267879412937, −8.310061634639968993764403624165, −7.45985560667588965978165906144, −6.79038227196567694631715258566, −6.40941752007862407532170431759, −5.88908450915949561478136129218, −5.41501572629242590776107371268, −4.61153453491182141362175201622, −4.09964629322041262514106195672, −1.82604108038319412812644968804, 0,
1.82604108038319412812644968804, 4.09964629322041262514106195672, 4.61153453491182141362175201622, 5.41501572629242590776107371268, 5.88908450915949561478136129218, 6.40941752007862407532170431759, 6.79038227196567694631715258566, 7.45985560667588965978165906144, 8.310061634639968993764403624165, 9.539278397314208258267879412937, 10.24325458310862263428196114864, 10.28025762974353066563394220777, 11.04319412119313584483866781888, 11.49712673239204411601833482255