Properties

Label 4-877952-1.1-c1e2-0-7
Degree $4$
Conductor $877952$
Sign $1$
Analytic cond. $55.9789$
Root an. cond. $2.73530$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 5·9-s − 12·11-s − 10·13-s + 16-s + 6·17-s − 5·18-s + 19-s − 12·22-s − 10·25-s − 10·26-s − 18·29-s + 8·31-s + 32-s + 6·34-s − 5·36-s − 4·37-s + 38-s + 16·43-s − 12·44-s − 13·49-s − 10·50-s − 10·52-s + 6·53-s − 18·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 5/3·9-s − 3.61·11-s − 2.77·13-s + 1/4·16-s + 1.45·17-s − 1.17·18-s + 0.229·19-s − 2.55·22-s − 2·25-s − 1.96·26-s − 3.34·29-s + 1.43·31-s + 0.176·32-s + 1.02·34-s − 5/6·36-s − 0.657·37-s + 0.162·38-s + 2.43·43-s − 1.80·44-s − 1.85·49-s − 1.41·50-s − 1.38·52-s + 0.824·53-s − 2.36·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 877952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 877952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(877952\)    =    \(2^{7} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(55.9789\)
Root analytic conductor: \(2.73530\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 877952,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
19$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87022552956968366194501622566, −7.40476303111443747598071967849, −7.14449686564876148233582580493, −6.09727019472392450239856120896, −5.56559135650201084358170066267, −5.41480429146700181457700017195, −5.32600053322851104543262796765, −4.76456060038860011441331940251, −3.98931312476793193392332292270, −3.24158791522542483628555695808, −2.80468657266648836263703727877, −2.38005475536401603079615670633, −2.16004950277651645615210004057, 0, 0, 2.16004950277651645615210004057, 2.38005475536401603079615670633, 2.80468657266648836263703727877, 3.24158791522542483628555695808, 3.98931312476793193392332292270, 4.76456060038860011441331940251, 5.32600053322851104543262796765, 5.41480429146700181457700017195, 5.56559135650201084358170066267, 6.09727019472392450239856120896, 7.14449686564876148233582580493, 7.40476303111443747598071967849, 7.87022552956968366194501622566

Graph of the $Z$-function along the critical line