L(s) = 1 | − 2·2-s − 2·3-s − 4-s − 4·5-s + 4·6-s − 6·7-s + 8·8-s + 2·9-s + 8·10-s − 6·11-s + 2·12-s + 12·14-s + 8·15-s − 7·16-s − 2·17-s − 4·18-s + 4·20-s + 12·21-s + 12·22-s + 2·23-s − 16·24-s + 11·25-s − 6·27-s + 6·28-s − 6·29-s − 16·30-s − 2·31-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s − 1/2·4-s − 1.78·5-s + 1.63·6-s − 2.26·7-s + 2.82·8-s + 2/3·9-s + 2.52·10-s − 1.80·11-s + 0.577·12-s + 3.20·14-s + 2.06·15-s − 7/4·16-s − 0.485·17-s − 0.942·18-s + 0.894·20-s + 2.61·21-s + 2.55·22-s + 0.417·23-s − 3.26·24-s + 11/5·25-s − 1.15·27-s + 1.13·28-s − 1.11·29-s − 2.92·30-s − 0.359·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 5 | $C_2$ | \( 1 + 4 T + p T^{2} \) |
| 17 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
good | 2 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 3 | $C_2^2$ | \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 13 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 19 | $C_2^2$ | \( 1 - 2 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 47 | $C_2^2$ | \( 1 - 90 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 82 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2^2$ | \( 1 - 98 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 73 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.42611989823108419734907230713, −13.32630533814246610775881387999, −12.94830783645454108530989986535, −12.48684728758773046959987897227, −11.59762270034917081739924900375, −11.18274439729825220667769445726, −10.32599067382036335971290078469, −10.32552968461798858128312043103, −9.536000449672005898168666201275, −9.119068847231446390664997108869, −8.097617687612107227145122256818, −8.085648823994533951087094693706, −7.09993871166123286783735789360, −6.79747013306469590511452414662, −5.50118783410996279208378411556, −4.95977831271023141004118810141, −4.01696982023488393293456825090, −3.32137479342394424359904830677, 0, 0,
3.32137479342394424359904830677, 4.01696982023488393293456825090, 4.95977831271023141004118810141, 5.50118783410996279208378411556, 6.79747013306469590511452414662, 7.09993871166123286783735789360, 8.085648823994533951087094693706, 8.097617687612107227145122256818, 9.119068847231446390664997108869, 9.536000449672005898168666201275, 10.32552968461798858128312043103, 10.32599067382036335971290078469, 11.18274439729825220667769445726, 11.59762270034917081739924900375, 12.48684728758773046959987897227, 12.94830783645454108530989986535, 13.32630533814246610775881387999, 13.42611989823108419734907230713