Properties

Label 4-855e2-1.1-c1e2-0-4
Degree $4$
Conductor $731025$
Sign $-1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 6·7-s − 2·13-s + 19-s − 25-s + 12·28-s + 3·31-s + 2·37-s + 8·43-s + 14·49-s + 4·52-s − 14·61-s + 8·64-s + 8·67-s − 14·73-s − 2·76-s + 12·79-s + 12·91-s + 28·97-s + 2·100-s − 6·103-s + 7·109-s − 3·121-s − 6·124-s + 127-s + 131-s − 6·133-s + ⋯
L(s)  = 1  − 4-s − 2.26·7-s − 0.554·13-s + 0.229·19-s − 1/5·25-s + 2.26·28-s + 0.538·31-s + 0.328·37-s + 1.21·43-s + 2·49-s + 0.554·52-s − 1.79·61-s + 64-s + 0.977·67-s − 1.63·73-s − 0.229·76-s + 1.35·79-s + 1.25·91-s + 2.84·97-s + 1/5·100-s − 0.591·103-s + 0.670·109-s − 0.272·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s − 0.520·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
19$C_2$ \( 1 - T + p T^{2} \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - T + p T^{2} ) \)
83$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.080451873692148054035255659032, −7.60483619511905417144497561702, −7.17046548460249144690289114907, −6.64868797335954987802648606278, −6.27458987075753739754017400329, −5.90703069937853517870497828523, −5.34919797396805925423634387050, −4.71147954673986466796135546198, −4.34595579050750539330271265221, −3.74395923694660727602660911129, −3.23602205336714547399982781168, −2.82803093830948032171434194362, −2.09593589379171299463948610753, −0.78742035018376813173338161309, 0, 0.78742035018376813173338161309, 2.09593589379171299463948610753, 2.82803093830948032171434194362, 3.23602205336714547399982781168, 3.74395923694660727602660911129, 4.34595579050750539330271265221, 4.71147954673986466796135546198, 5.34919797396805925423634387050, 5.90703069937853517870497828523, 6.27458987075753739754017400329, 6.64868797335954987802648606278, 7.17046548460249144690289114907, 7.60483619511905417144497561702, 8.080451873692148054035255659032

Graph of the $Z$-function along the critical line