L(s) = 1 | + 3·4-s + 4·5-s + 4·11-s + 5·16-s − 2·19-s + 12·20-s + 11·25-s + 12·29-s − 8·31-s + 4·41-s + 12·44-s + 10·49-s + 16·55-s − 20·61-s + 3·64-s − 16·71-s − 6·76-s + 16·79-s + 20·80-s − 20·89-s − 8·95-s + 33·100-s + 12·109-s + 36·116-s − 10·121-s − 24·124-s + 24·125-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 1.78·5-s + 1.20·11-s + 5/4·16-s − 0.458·19-s + 2.68·20-s + 11/5·25-s + 2.22·29-s − 1.43·31-s + 0.624·41-s + 1.80·44-s + 10/7·49-s + 2.15·55-s − 2.56·61-s + 3/8·64-s − 1.89·71-s − 0.688·76-s + 1.80·79-s + 2.23·80-s − 2.11·89-s − 0.820·95-s + 3.29·100-s + 1.14·109-s + 3.34·116-s − 0.909·121-s − 2.15·124-s + 2.14·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.009034743\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.009034743\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 - 4 T + p T^{2} \) |
| 19 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 2 | $C_2^2$ | \( 1 - 3 T^{2} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 118 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 - 130 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41737247471285469807786476730, −10.12646617100499277098909120431, −9.483567440917630241018606292112, −9.250840009713004995148678350012, −8.754137495052402914892306546719, −8.479230701203551187422644813196, −7.56024957916006174241903721531, −7.38306704759315663432768293714, −6.72892563003714813428130132180, −6.51362987178189988334855362282, −5.99831679603070817721854291951, −5.96564902743805933963082980578, −5.20257039028099728325110258959, −4.67836198328781943963638737601, −4.03065092351358301673726484637, −3.30432615157517333132330895532, −2.56970910005043211489291031175, −2.44436305421132028083560688713, −1.50865096095262405934657522825, −1.31120513869035294460168071989,
1.31120513869035294460168071989, 1.50865096095262405934657522825, 2.44436305421132028083560688713, 2.56970910005043211489291031175, 3.30432615157517333132330895532, 4.03065092351358301673726484637, 4.67836198328781943963638737601, 5.20257039028099728325110258959, 5.96564902743805933963082980578, 5.99831679603070817721854291951, 6.51362987178189988334855362282, 6.72892563003714813428130132180, 7.38306704759315663432768293714, 7.56024957916006174241903721531, 8.479230701203551187422644813196, 8.754137495052402914892306546719, 9.250840009713004995148678350012, 9.483567440917630241018606292112, 10.12646617100499277098909120431, 10.41737247471285469807786476730