L(s) = 1 | + 3·4-s + 4·5-s + 4·11-s + 5·16-s − 2·19-s + 12·20-s + 11·25-s + 12·29-s − 8·31-s + 4·41-s + 12·44-s + 10·49-s + 16·55-s − 20·61-s + 3·64-s − 16·71-s − 6·76-s + 16·79-s + 20·80-s − 20·89-s − 8·95-s + 33·100-s + 12·109-s + 36·116-s − 10·121-s − 24·124-s + 24·125-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 1.78·5-s + 1.20·11-s + 5/4·16-s − 0.458·19-s + 2.68·20-s + 11/5·25-s + 2.22·29-s − 1.43·31-s + 0.624·41-s + 1.80·44-s + 10/7·49-s + 2.15·55-s − 2.56·61-s + 3/8·64-s − 1.89·71-s − 0.688·76-s + 1.80·79-s + 2.23·80-s − 2.11·89-s − 0.820·95-s + 3.29·100-s + 1.14·109-s + 3.34·116-s − 0.909·121-s − 2.15·124-s + 2.14·125-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.009034743 |
L(21) |
≈ |
5.009034743 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1−4T+pT2 |
| 19 | C1 | (1+T)2 |
good | 2 | C22 | 1−3T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C22 | 1+14T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41737247471285469807786476730, −10.12646617100499277098909120431, −9.483567440917630241018606292112, −9.250840009713004995148678350012, −8.754137495052402914892306546719, −8.479230701203551187422644813196, −7.56024957916006174241903721531, −7.38306704759315663432768293714, −6.72892563003714813428130132180, −6.51362987178189988334855362282, −5.99831679603070817721854291951, −5.96564902743805933963082980578, −5.20257039028099728325110258959, −4.67836198328781943963638737601, −4.03065092351358301673726484637, −3.30432615157517333132330895532, −2.56970910005043211489291031175, −2.44436305421132028083560688713, −1.50865096095262405934657522825, −1.31120513869035294460168071989,
1.31120513869035294460168071989, 1.50865096095262405934657522825, 2.44436305421132028083560688713, 2.56970910005043211489291031175, 3.30432615157517333132330895532, 4.03065092351358301673726484637, 4.67836198328781943963638737601, 5.20257039028099728325110258959, 5.96564902743805933963082980578, 5.99831679603070817721854291951, 6.51362987178189988334855362282, 6.72892563003714813428130132180, 7.38306704759315663432768293714, 7.56024957916006174241903721531, 8.479230701203551187422644813196, 8.754137495052402914892306546719, 9.250840009713004995148678350012, 9.483567440917630241018606292112, 10.12646617100499277098909120431, 10.41737247471285469807786476730