| L(s) = 1 | − 2·2-s − 3·3-s + 6·6-s − 7-s + 4·8-s + 6·9-s − 5·11-s − 13-s + 2·14-s − 4·16-s + 4·17-s − 12·18-s + 19-s + 3·21-s + 10·22-s − 12·24-s + 25-s + 2·26-s − 9·27-s + 5·29-s − 8·31-s + 15·33-s − 8·34-s − 3·37-s − 2·38-s + 3·39-s + 5·41-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 1.73·3-s + 2.44·6-s − 0.377·7-s + 1.41·8-s + 2·9-s − 1.50·11-s − 0.277·13-s + 0.534·14-s − 16-s + 0.970·17-s − 2.82·18-s + 0.229·19-s + 0.654·21-s + 2.13·22-s − 2.44·24-s + 1/5·25-s + 0.392·26-s − 1.73·27-s + 0.928·29-s − 1.43·31-s + 2.61·33-s − 1.37·34-s − 0.493·37-s − 0.324·38-s + 0.480·39-s + 0.780·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.6841821374, −12.2745689650, −11.9068217858, −11.4483097383, −10.9649589306, −10.6217574602, −10.3029039188, −9.97341081999, −9.78762338022, −9.16992047580, −8.85403739370, −8.27109871522, −7.78964353793, −7.50282307974, −7.20668928957, −6.43119713842, −6.09791352074, −5.57072993674, −5.13464222888, −4.64570704253, −4.49582165875, −3.35884277758, −2.99441890387, −1.75107483705, −1.18099127371, 0, 0,
1.18099127371, 1.75107483705, 2.99441890387, 3.35884277758, 4.49582165875, 4.64570704253, 5.13464222888, 5.57072993674, 6.09791352074, 6.43119713842, 7.20668928957, 7.50282307974, 7.78964353793, 8.27109871522, 8.85403739370, 9.16992047580, 9.78762338022, 9.97341081999, 10.3029039188, 10.6217574602, 10.9649589306, 11.4483097383, 11.9068217858, 12.2745689650, 12.6841821374