Properties

Label 4-855e2-1.1-c1e2-0-10
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 6·6-s − 7-s + 4·8-s + 6·9-s − 5·11-s − 13-s + 2·14-s − 4·16-s + 4·17-s − 12·18-s + 19-s + 3·21-s + 10·22-s − 12·24-s + 25-s + 2·26-s − 9·27-s + 5·29-s − 8·31-s + 15·33-s − 8·34-s − 3·37-s − 2·38-s + 3·39-s + 5·41-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 2.44·6-s − 0.377·7-s + 1.41·8-s + 2·9-s − 1.50·11-s − 0.277·13-s + 0.534·14-s − 16-s + 0.970·17-s − 2.82·18-s + 0.229·19-s + 0.654·21-s + 2.13·22-s − 2.44·24-s + 1/5·25-s + 0.392·26-s − 1.73·27-s + 0.928·29-s − 1.43·31-s + 2.61·33-s − 1.37·34-s − 0.493·37-s − 0.324·38-s + 0.480·39-s + 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
19$C_2$ \( 1 - T + p T^{2} \)
good2$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
7$C_4$ \( 1 + T + 5 T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 5 T + 13 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T + 15 T^{2} + p T^{3} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$D_{4}$ \( 1 - 5 T + 37 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$D_{4}$ \( 1 + 3 T + 61 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 5 T + 13 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 14 T + 103 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 14 T + 112 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 8 T + 41 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 7 T + 25 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$D_{4}$ \( 1 + 8 T + 122 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 3 T - 47 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 136 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.6841821374, −12.2745689650, −11.9068217858, −11.4483097383, −10.9649589306, −10.6217574602, −10.3029039188, −9.97341081999, −9.78762338022, −9.16992047580, −8.85403739370, −8.27109871522, −7.78964353793, −7.50282307974, −7.20668928957, −6.43119713842, −6.09791352074, −5.57072993674, −5.13464222888, −4.64570704253, −4.49582165875, −3.35884277758, −2.99441890387, −1.75107483705, −1.18099127371, 0, 0, 1.18099127371, 1.75107483705, 2.99441890387, 3.35884277758, 4.49582165875, 4.64570704253, 5.13464222888, 5.57072993674, 6.09791352074, 6.43119713842, 7.20668928957, 7.50282307974, 7.78964353793, 8.27109871522, 8.85403739370, 9.16992047580, 9.78762338022, 9.97341081999, 10.3029039188, 10.6217574602, 10.9649589306, 11.4483097383, 11.9068217858, 12.2745689650, 12.6841821374

Graph of the $Z$-function along the critical line