Properties

Label 4-855e2-1.1-c0e2-0-0
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $0.182073$
Root an. cond. $0.653223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·16-s − 2·19-s − 25-s + 2·49-s + 4·61-s − 4·64-s + 4·76-s + 2·100-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + 197-s + ⋯
L(s)  = 1  − 2·4-s + 3·16-s − 2·19-s − 25-s + 2·49-s + 4·61-s − 4·64-s + 4·76-s + 2·100-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + 197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.182073\)
Root analytic conductor: \(0.653223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 731025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4709855956\)
\(L(\frac12)\) \(\approx\) \(0.4709855956\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
19$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$ \( ( 1 - T )^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39362992561294684367144717927, −9.938023508716114438615412539379, −9.935224915325706876146880644565, −9.233680695753324646036289475510, −8.844812329386031709516243281533, −8.622554972135854310651242063969, −8.159786214993360024317458354109, −7.896313259826873230734736719258, −7.23354116876202208422031411645, −6.71051172070228487336639076565, −6.16485284536393311714688905889, −5.52956726641953847845006122904, −5.43089577767191624653108792806, −4.72730467283073990681562354768, −4.14212187204367362594602075666, −4.04005117855751908584612703180, −3.51522965472445254476240749136, −2.59228109815596430842835535724, −1.90073524500712755725850802148, −0.73410684909916266227780964106, 0.73410684909916266227780964106, 1.90073524500712755725850802148, 2.59228109815596430842835535724, 3.51522965472445254476240749136, 4.04005117855751908584612703180, 4.14212187204367362594602075666, 4.72730467283073990681562354768, 5.43089577767191624653108792806, 5.52956726641953847845006122904, 6.16485284536393311714688905889, 6.71051172070228487336639076565, 7.23354116876202208422031411645, 7.896313259826873230734736719258, 8.159786214993360024317458354109, 8.622554972135854310651242063969, 8.844812329386031709516243281533, 9.233680695753324646036289475510, 9.935224915325706876146880644565, 9.938023508716114438615412539379, 10.39362992561294684367144717927

Graph of the $Z$-function along the critical line