Properties

Label 4-84e4-1.1-c1e2-0-7
Degree $4$
Conductor $49787136$
Sign $1$
Analytic cond. $3174.47$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·13-s + 8·25-s − 4·37-s + 24·61-s + 12·73-s + 36·97-s + 40·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 3.32·13-s + 8/5·25-s − 0.657·37-s + 3.07·61-s + 1.40·73-s + 3.65·97-s + 3.83·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49787136\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3174.47\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 49787136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.127505995\)
\(L(\frac12)\) \(\approx\) \(2.127505995\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 160 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.009253831968333635808125866585, −7.81492954648964393522734584028, −7.19145910544666498891113445797, −7.11218798708320075634389802421, −6.95513867203704974731434897456, −6.49962270629021938054076514075, −5.96941352191601822635668683781, −5.60900396905505559650093140039, −5.00031148750399214517193006083, −4.99956563265915660869631633439, −4.75745917187047661738024340184, −4.31909322736510001751412221574, −3.53229561037629840585753773469, −3.52421364174003075451736740308, −2.77550747225285505653088259414, −2.45724058420728031294468177237, −2.21362794244526274173414342729, −1.71451679437416289699726660263, −0.76487608081286292668065186274, −0.47402924764212930180657442490, 0.47402924764212930180657442490, 0.76487608081286292668065186274, 1.71451679437416289699726660263, 2.21362794244526274173414342729, 2.45724058420728031294468177237, 2.77550747225285505653088259414, 3.52421364174003075451736740308, 3.53229561037629840585753773469, 4.31909322736510001751412221574, 4.75745917187047661738024340184, 4.99956563265915660869631633439, 5.00031148750399214517193006083, 5.60900396905505559650093140039, 5.96941352191601822635668683781, 6.49962270629021938054076514075, 6.95513867203704974731434897456, 7.11218798708320075634389802421, 7.19145910544666498891113445797, 7.81492954648964393522734584028, 8.009253831968333635808125866585

Graph of the $Z$-function along the critical line