Properties

Label 4-84e4-1.1-c1e2-0-31
Degree $4$
Conductor $49787136$
Sign $1$
Analytic cond. $3174.47$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·23-s − 8·25-s + 12·29-s − 8·37-s − 8·43-s + 8·53-s − 8·67-s − 24·71-s − 16·79-s − 32·107-s − 8·109-s + 32·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 24·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 1.66·23-s − 8/5·25-s + 2.22·29-s − 1.31·37-s − 1.21·43-s + 1.09·53-s − 0.977·67-s − 2.84·71-s − 1.80·79-s − 3.09·107-s − 0.766·109-s + 3.01·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49787136\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3174.47\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 49787136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 176 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61066522661193283545783711375, −7.58795451326875479209845333098, −7.02568449770711314037797435098, −6.77949635893078183847309567516, −6.22041496320597270983853806535, −6.15133613194470043229319954462, −5.54888612874682539694396656873, −5.51937615920369390057717568101, −4.81857594923965551551852699824, −4.54556440749724416627877434020, −4.10063387202810082789878650159, −3.92858217851061008623942509338, −3.17192868630375425783705335390, −3.14158318448693500137288707154, −2.37562638130503107102256014316, −2.14458077822198471728102000494, −1.46369929086571610211802470414, −1.20284095199701161189377920658, 0, 0, 1.20284095199701161189377920658, 1.46369929086571610211802470414, 2.14458077822198471728102000494, 2.37562638130503107102256014316, 3.14158318448693500137288707154, 3.17192868630375425783705335390, 3.92858217851061008623942509338, 4.10063387202810082789878650159, 4.54556440749724416627877434020, 4.81857594923965551551852699824, 5.51937615920369390057717568101, 5.54888612874682539694396656873, 6.15133613194470043229319954462, 6.22041496320597270983853806535, 6.77949635893078183847309567516, 7.02568449770711314037797435098, 7.58795451326875479209845333098, 7.61066522661193283545783711375

Graph of the $Z$-function along the critical line