Properties

Label 4-84e4-1.1-c1e2-0-26
Degree $4$
Conductor $49787136$
Sign $1$
Analytic cond. $3174.47$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s − 2·25-s − 4·29-s + 20·37-s + 8·43-s − 12·53-s − 24·67-s − 16·79-s − 24·107-s + 4·109-s − 20·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 18·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2.41·11-s − 2/5·25-s − 0.742·29-s + 3.28·37-s + 1.21·43-s − 1.64·53-s − 2.93·67-s − 1.80·79-s − 2.32·107-s + 0.383·109-s − 1.88·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49787136\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3174.47\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 49787136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 162 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66385608600355356106923139341, −7.61189249432326648574893889856, −7.27673623844342441784696864636, −6.74200760483403765421632238223, −6.13012491807740548800952909323, −6.06087947750726173882310739503, −5.68157645604321541210999703808, −5.37162300717743627710762074057, −4.77406168007579911789809614865, −4.73954541733004625727012206380, −4.09280475232598792418636805106, −3.96556073108354548696129232024, −3.12077383726807468419328919965, −2.89493450537130826815590214493, −2.52859560790859900549319443338, −2.27981690122073493351452636469, −1.48764779025998539570546338389, −1.06436577577343601159353614621, 0, 0, 1.06436577577343601159353614621, 1.48764779025998539570546338389, 2.27981690122073493351452636469, 2.52859560790859900549319443338, 2.89493450537130826815590214493, 3.12077383726807468419328919965, 3.96556073108354548696129232024, 4.09280475232598792418636805106, 4.73954541733004625727012206380, 4.77406168007579911789809614865, 5.37162300717743627710762074057, 5.68157645604321541210999703808, 6.06087947750726173882310739503, 6.13012491807740548800952909323, 6.74200760483403765421632238223, 7.27673623844342441784696864636, 7.61189249432326648574893889856, 7.66385608600355356106923139341

Graph of the $Z$-function along the critical line