Properties

Label 4-840e2-1.1-c1e2-0-49
Degree $4$
Conductor $705600$
Sign $-1$
Analytic cond. $44.9896$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s + 4·13-s − 8·17-s + 11·25-s − 4·29-s + 8·37-s + 4·41-s − 4·45-s − 49-s − 8·53-s − 20·61-s − 16·65-s + 24·73-s + 81-s + 32·85-s + 12·89-s + 16·97-s + 4·101-s − 12·109-s − 16·113-s + 4·117-s − 6·121-s − 24·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.78·5-s + 1/3·9-s + 1.10·13-s − 1.94·17-s + 11/5·25-s − 0.742·29-s + 1.31·37-s + 0.624·41-s − 0.596·45-s − 1/7·49-s − 1.09·53-s − 2.56·61-s − 1.98·65-s + 2.80·73-s + 1/9·81-s + 3.47·85-s + 1.27·89-s + 1.62·97-s + 0.398·101-s − 1.14·109-s − 1.50·113-s + 0.369·117-s − 0.545·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 705600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 705600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(705600\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(44.9896\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 705600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.012912829647167215704760004708, −7.71449162947661836420265068332, −7.33372368484635249387450536854, −6.75823637960211716328340425718, −6.28941019972383857037754310409, −6.10816158932353051957037945885, −5.10302467505602603374268699583, −4.70725572561342107049587651940, −4.26573810362333541058142475683, −3.85072701399017100200207637759, −3.42354699340071091780307994487, −2.73359461063529602840073663977, −1.97106312851700076725021669276, −0.999306442120385292060302743434, 0, 0.999306442120385292060302743434, 1.97106312851700076725021669276, 2.73359461063529602840073663977, 3.42354699340071091780307994487, 3.85072701399017100200207637759, 4.26573810362333541058142475683, 4.70725572561342107049587651940, 5.10302467505602603374268699583, 6.10816158932353051957037945885, 6.28941019972383857037754310409, 6.75823637960211716328340425718, 7.33372368484635249387450536854, 7.71449162947661836420265068332, 8.012912829647167215704760004708

Graph of the $Z$-function along the critical line