L(s) = 1 | − 2-s + 4-s − 8-s + 16-s − 6·17-s − 8·19-s − 25-s − 32-s + 6·34-s + 8·38-s + 12·41-s + 16·43-s + 2·49-s + 50-s + 64-s − 8·67-s − 6·68-s + 22·73-s − 8·76-s − 12·82-s − 24·83-s − 16·86-s − 6·89-s + 4·97-s − 2·98-s − 100-s + 24·107-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1/4·16-s − 1.45·17-s − 1.83·19-s − 1/5·25-s − 0.176·32-s + 1.02·34-s + 1.29·38-s + 1.87·41-s + 2.43·43-s + 2/7·49-s + 0.141·50-s + 1/8·64-s − 0.977·67-s − 0.727·68-s + 2.57·73-s − 0.917·76-s − 1.32·82-s − 2.63·83-s − 1.72·86-s − 0.635·89-s + 0.406·97-s − 0.202·98-s − 0.0999·100-s + 2.32·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 3 | | \( 1 \) |
good | 5 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 11 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.232374036135459680553193882425, −7.56796841047164741259196221788, −7.16277862972928710155421440227, −6.70609819233810081586523518704, −6.29261335708839240986736404399, −5.88525525346038032578810702567, −5.44593867080302146754053827061, −4.56777520805634839354449713902, −4.25638665319375785757127060430, −3.92139592663038120099322276304, −2.94651413139897301734292877776, −2.35182610767126161221653664716, −2.08634101847373408833873631943, −1.02356060707584348961647541129, 0,
1.02356060707584348961647541129, 2.08634101847373408833873631943, 2.35182610767126161221653664716, 2.94651413139897301734292877776, 3.92139592663038120099322276304, 4.25638665319375785757127060430, 4.56777520805634839354449713902, 5.44593867080302146754053827061, 5.88525525346038032578810702567, 6.29261335708839240986736404399, 6.70609819233810081586523518704, 7.16277862972928710155421440227, 7.56796841047164741259196221788, 8.232374036135459680553193882425