Properties

Label 4-839808-1.1-c1e2-0-4
Degree $4$
Conductor $839808$
Sign $1$
Analytic cond. $53.5468$
Root an. cond. $2.70510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 16-s + 6·17-s − 8·19-s − 25-s + 32-s + 6·34-s − 8·38-s − 12·41-s + 16·43-s + 2·49-s − 50-s + 64-s − 8·67-s + 6·68-s + 22·73-s − 8·76-s − 12·82-s + 24·83-s + 16·86-s + 6·89-s + 4·97-s + 2·98-s − 100-s − 24·107-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1/4·16-s + 1.45·17-s − 1.83·19-s − 1/5·25-s + 0.176·32-s + 1.02·34-s − 1.29·38-s − 1.87·41-s + 2.43·43-s + 2/7·49-s − 0.141·50-s + 1/8·64-s − 0.977·67-s + 0.727·68-s + 2.57·73-s − 0.917·76-s − 1.32·82-s + 2.63·83-s + 1.72·86-s + 0.635·89-s + 0.406·97-s + 0.202·98-s − 0.0999·100-s − 2.32·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(839808\)    =    \(2^{7} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(53.5468\)
Root analytic conductor: \(2.70510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 839808,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.116533897\)
\(L(\frac12)\) \(\approx\) \(3.116533897\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.153205859443475808039169365129, −7.79409315011386614496311102735, −7.24345462277249174674167705434, −6.88462097851938764634300699739, −6.18735538198950166736525445007, −6.11563543838000124898248269154, −5.49090131952205180218546644094, −4.97067099118845305707332827681, −4.60568685013129480432704821683, −3.83528584973290190499044501865, −3.69589098584017718744945020548, −2.94903686287780602993956585385, −2.30016225881827778465495235815, −1.78014361920684476225734672011, −0.75418881749976335996165607688, 0.75418881749976335996165607688, 1.78014361920684476225734672011, 2.30016225881827778465495235815, 2.94903686287780602993956585385, 3.69589098584017718744945020548, 3.83528584973290190499044501865, 4.60568685013129480432704821683, 4.97067099118845305707332827681, 5.49090131952205180218546644094, 6.11563543838000124898248269154, 6.18735538198950166736525445007, 6.88462097851938764634300699739, 7.24345462277249174674167705434, 7.79409315011386614496311102735, 8.153205859443475808039169365129

Graph of the $Z$-function along the critical line