Properties

Label 4-839808-1.1-c1e2-0-1
Degree $4$
Conductor $839808$
Sign $1$
Analytic cond. $53.5468$
Root an. cond. $2.70510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 6·11-s + 16-s − 6·17-s − 2·19-s − 6·22-s − 10·25-s + 32-s − 6·34-s − 2·38-s + 18·41-s − 2·43-s − 6·44-s − 10·49-s − 10·50-s + 6·59-s + 64-s + 10·67-s − 6·68-s + 22·73-s − 2·76-s + 18·82-s + 24·83-s − 2·86-s − 6·88-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.80·11-s + 1/4·16-s − 1.45·17-s − 0.458·19-s − 1.27·22-s − 2·25-s + 0.176·32-s − 1.02·34-s − 0.324·38-s + 2.81·41-s − 0.304·43-s − 0.904·44-s − 1.42·49-s − 1.41·50-s + 0.781·59-s + 1/8·64-s + 1.22·67-s − 0.727·68-s + 2.57·73-s − 0.229·76-s + 1.98·82-s + 2.63·83-s − 0.215·86-s − 0.639·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 839808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(839808\)    =    \(2^{7} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(53.5468\)
Root analytic conductor: \(2.70510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 839808,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.925402993\)
\(L(\frac12)\) \(\approx\) \(1.925402993\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.004874510471126629875326215800, −7.63671497466111343831458484773, −7.61550392042635002094679885373, −6.71782060930200301497522083770, −6.25936593777468405983226275094, −6.13537847248252222252378323029, −5.27398052675085301748339586603, −5.13805326110939411578475614907, −4.58847837490118018713372112605, −3.94847330019587176084970982031, −3.66068742781442559176084506010, −2.78620746794391482576765657021, −2.19879385611801234222671009191, −2.08674986394077854980553765067, −0.55030123589812757559608034041, 0.55030123589812757559608034041, 2.08674986394077854980553765067, 2.19879385611801234222671009191, 2.78620746794391482576765657021, 3.66068742781442559176084506010, 3.94847330019587176084970982031, 4.58847837490118018713372112605, 5.13805326110939411578475614907, 5.27398052675085301748339586603, 6.13537847248252222252378323029, 6.25936593777468405983226275094, 6.71782060930200301497522083770, 7.61550392042635002094679885373, 7.63671497466111343831458484773, 8.004874510471126629875326215800

Graph of the $Z$-function along the critical line