| L(s) = 1 | + 2·2-s + 4-s + 4·11-s + 4·13-s + 16-s + 8·17-s + 2·19-s + 8·22-s + 4·23-s − 2·25-s + 8·26-s − 2·32-s + 16·34-s − 12·37-s + 4·38-s + 4·44-s + 8·46-s − 12·47-s − 4·50-s + 4·52-s − 16·53-s + 8·61-s − 11·64-s − 20·67-s + 8·68-s + 20·71-s + 16·73-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1/2·4-s + 1.20·11-s + 1.10·13-s + 1/4·16-s + 1.94·17-s + 0.458·19-s + 1.70·22-s + 0.834·23-s − 2/5·25-s + 1.56·26-s − 0.353·32-s + 2.74·34-s − 1.97·37-s + 0.648·38-s + 0.603·44-s + 1.17·46-s − 1.75·47-s − 0.565·50-s + 0.554·52-s − 2.19·53-s + 1.02·61-s − 1.37·64-s − 2.44·67-s + 0.970·68-s + 2.37·71-s + 1.87·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(7.195262395\) |
| \(L(\frac12)\) |
\(\approx\) |
\(7.195262395\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.078995270448619306687142311721, −7.40485734412077937150370935600, −7.33886903981024334959935896958, −6.63540691769122829687294287381, −6.59304639618179987489327212679, −6.25991864105311545734733336830, −5.67750786425896670368784004197, −5.44614701128229507094230519824, −5.12468948513043959496554063908, −5.02894034070982118769634141626, −4.22377232870271963348566590360, −4.19310174736509992724304221170, −3.57688474722873815476678187952, −3.57453954600856998698479638833, −2.98968921574449153862325786165, −2.92176518433920658930538602942, −1.82179982687323108952470841901, −1.42359303023809217045226800641, −1.38551194748689730126551863629, −0.49326775518022342577598690799,
0.49326775518022342577598690799, 1.38551194748689730126551863629, 1.42359303023809217045226800641, 1.82179982687323108952470841901, 2.92176518433920658930538602942, 2.98968921574449153862325786165, 3.57453954600856998698479638833, 3.57688474722873815476678187952, 4.19310174736509992724304221170, 4.22377232870271963348566590360, 5.02894034070982118769634141626, 5.12468948513043959496554063908, 5.44614701128229507094230519824, 5.67750786425896670368784004197, 6.25991864105311545734733336830, 6.59304639618179987489327212679, 6.63540691769122829687294287381, 7.33886903981024334959935896958, 7.40485734412077937150370935600, 8.078995270448619306687142311721