| L(s) = 1 | + 2·2-s + 4-s + 2·5-s + 4·10-s − 2·11-s − 4·13-s + 16-s − 8·17-s + 2·19-s + 2·20-s − 4·22-s + 14·23-s − 7·25-s − 8·26-s + 16·29-s + 4·31-s − 2·32-s − 16·34-s + 4·37-s + 4·38-s − 12·41-s + 2·43-s − 2·44-s + 28·46-s − 6·47-s − 14·50-s − 4·52-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1/2·4-s + 0.894·5-s + 1.26·10-s − 0.603·11-s − 1.10·13-s + 1/4·16-s − 1.94·17-s + 0.458·19-s + 0.447·20-s − 0.852·22-s + 2.91·23-s − 7/5·25-s − 1.56·26-s + 2.97·29-s + 0.718·31-s − 0.353·32-s − 2.74·34-s + 0.657·37-s + 0.648·38-s − 1.87·41-s + 0.304·43-s − 0.301·44-s + 4.12·46-s − 0.875·47-s − 1.97·50-s − 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(5.653337906\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.653337906\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.955847194745948757466401449731, −7.49500824789736660604985527017, −7.07849168213727086924731594792, −6.73040059535711733973809028427, −6.63984849171206317592199153186, −6.22993282204430689929273626205, −5.74250233009827087768408143642, −5.41256067580243381231398531207, −4.98711705259485142364187464826, −4.80593901626654231046243005465, −4.57856578128829407279366795195, −4.45419551497814991871024807533, −3.59471129435026268497584483393, −3.40532119917113448227826210075, −2.81435699176931005484273141129, −2.62548876893381550671462056413, −2.19846638818811275826015644718, −1.72563003880105871263718893999, −1.05568521557433465559119258008, −0.45059304586768951778828774255,
0.45059304586768951778828774255, 1.05568521557433465559119258008, 1.72563003880105871263718893999, 2.19846638818811275826015644718, 2.62548876893381550671462056413, 2.81435699176931005484273141129, 3.40532119917113448227826210075, 3.59471129435026268497584483393, 4.45419551497814991871024807533, 4.57856578128829407279366795195, 4.80593901626654231046243005465, 4.98711705259485142364187464826, 5.41256067580243381231398531207, 5.74250233009827087768408143642, 6.22993282204430689929273626205, 6.63984849171206317592199153186, 6.73040059535711733973809028427, 7.07849168213727086924731594792, 7.49500824789736660604985527017, 7.955847194745948757466401449731