| L(s) = 1 | + 2·2-s + 4-s + 2·5-s + 4·10-s + 2·11-s + 16-s − 4·17-s − 2·19-s + 2·20-s + 4·22-s − 2·23-s + 25-s + 4·29-s − 12·31-s − 2·32-s − 8·34-s + 8·37-s − 4·38-s − 4·41-s − 14·43-s + 2·44-s − 4·46-s − 18·47-s + 2·50-s + 4·53-s + 4·55-s + 8·58-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1/2·4-s + 0.894·5-s + 1.26·10-s + 0.603·11-s + 1/4·16-s − 0.970·17-s − 0.458·19-s + 0.447·20-s + 0.852·22-s − 0.417·23-s + 1/5·25-s + 0.742·29-s − 2.15·31-s − 0.353·32-s − 1.37·34-s + 1.31·37-s − 0.648·38-s − 0.624·41-s − 2.13·43-s + 0.301·44-s − 0.589·46-s − 2.62·47-s + 0.282·50-s + 0.549·53-s + 0.539·55-s + 1.05·58-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70207641 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.4045170777\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4045170777\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83263779532065215188139260766, −7.39186616028546697067545586928, −7.38339003687213147439767350464, −6.61456317085116609378301022167, −6.49441932491779124870811787795, −6.18534755255517844545005576251, −5.80122191701016133853148485879, −5.63826504828734904478674258120, −4.97447331974842749874321414018, −4.79828078333765794003161177689, −4.47582617202134937864740921630, −4.32325371252366613096075432847, −3.70221403746767035556992547579, −3.33567118835517075670017424799, −3.06424817070466360044516943899, −2.63082680657280336023198856740, −1.78494248570683923105349552154, −1.70140781380202816137512596075, −1.46228871865551032818498935455, −0.10175573901711212033374417786,
0.10175573901711212033374417786, 1.46228871865551032818498935455, 1.70140781380202816137512596075, 1.78494248570683923105349552154, 2.63082680657280336023198856740, 3.06424817070466360044516943899, 3.33567118835517075670017424799, 3.70221403746767035556992547579, 4.32325371252366613096075432847, 4.47582617202134937864740921630, 4.79828078333765794003161177689, 4.97447331974842749874321414018, 5.63826504828734904478674258120, 5.80122191701016133853148485879, 6.18534755255517844545005576251, 6.49441932491779124870811787795, 6.61456317085116609378301022167, 7.38339003687213147439767350464, 7.39186616028546697067545586928, 7.83263779532065215188139260766