Properties

Label 4-831875-1.1-c1e2-0-1
Degree $4$
Conductor $831875$
Sign $-1$
Analytic cond. $53.0410$
Root an. cond. $2.69869$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 6·9-s − 11-s + 5·16-s − 8·23-s − 16·31-s + 18·36-s + 4·37-s + 3·44-s + 24·47-s − 14·49-s + 4·53-s + 8·59-s − 3·64-s + 32·67-s + 16·71-s + 27·81-s + 20·89-s + 24·92-s − 20·97-s + 6·99-s + 8·103-s + 12·113-s + 121-s + 48·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 3/2·4-s − 2·9-s − 0.301·11-s + 5/4·16-s − 1.66·23-s − 2.87·31-s + 3·36-s + 0.657·37-s + 0.452·44-s + 3.50·47-s − 2·49-s + 0.549·53-s + 1.04·59-s − 3/8·64-s + 3.90·67-s + 1.89·71-s + 3·81-s + 2.11·89-s + 2.50·92-s − 2.03·97-s + 0.603·99-s + 0.788·103-s + 1.12·113-s + 1/11·121-s + 4.31·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 831875 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831875 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(831875\)    =    \(5^{4} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(53.0410\)
Root analytic conductor: \(2.69869\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 831875,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
11$C_1$ \( 1 + T \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.032357569215232401617509130184, −7.82885193609770565758085877155, −7.25345373525116928335761342083, −6.54918508631964327843106616026, −6.01863453952841743401384036248, −5.62267982183930582090539793665, −5.23353820210759730524176244525, −5.04438306355119198762685190347, −4.11816586584967359873614255585, −3.64867610629817493009082817690, −3.57615991727962736404141628215, −2.31804956482818418780108048277, −2.30183692911339057669317387952, −0.74278936026352163297831552325, 0, 0.74278936026352163297831552325, 2.30183692911339057669317387952, 2.31804956482818418780108048277, 3.57615991727962736404141628215, 3.64867610629817493009082817690, 4.11816586584967359873614255585, 5.04438306355119198762685190347, 5.23353820210759730524176244525, 5.62267982183930582090539793665, 6.01863453952841743401384036248, 6.54918508631964327843106616026, 7.25345373525116928335761342083, 7.82885193609770565758085877155, 8.032357569215232401617509130184

Graph of the $Z$-function along the critical line