L(s) = 1 | − 3·4-s − 6·9-s − 11-s + 5·16-s − 8·23-s − 16·31-s + 18·36-s + 4·37-s + 3·44-s + 24·47-s − 14·49-s + 4·53-s + 8·59-s − 3·64-s + 32·67-s + 16·71-s + 27·81-s + 20·89-s + 24·92-s − 20·97-s + 6·99-s + 8·103-s + 12·113-s + 121-s + 48·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 3/2·4-s − 2·9-s − 0.301·11-s + 5/4·16-s − 1.66·23-s − 2.87·31-s + 3·36-s + 0.657·37-s + 0.452·44-s + 3.50·47-s − 2·49-s + 0.549·53-s + 1.04·59-s − 3/8·64-s + 3.90·67-s + 1.89·71-s + 3·81-s + 2.11·89-s + 2.50·92-s − 2.03·97-s + 0.603·99-s + 0.788·103-s + 1.12·113-s + 1/11·121-s + 4.31·124-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 831875 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831875 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 5 | | \( 1 \) |
| 11 | $C_1$ | \( 1 + T \) |
good | 2 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 3 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.032357569215232401617509130184, −7.82885193609770565758085877155, −7.25345373525116928335761342083, −6.54918508631964327843106616026, −6.01863453952841743401384036248, −5.62267982183930582090539793665, −5.23353820210759730524176244525, −5.04438306355119198762685190347, −4.11816586584967359873614255585, −3.64867610629817493009082817690, −3.57615991727962736404141628215, −2.31804956482818418780108048277, −2.30183692911339057669317387952, −0.74278936026352163297831552325, 0,
0.74278936026352163297831552325, 2.30183692911339057669317387952, 2.31804956482818418780108048277, 3.57615991727962736404141628215, 3.64867610629817493009082817690, 4.11816586584967359873614255585, 5.04438306355119198762685190347, 5.23353820210759730524176244525, 5.62267982183930582090539793665, 6.01863453952841743401384036248, 6.54918508631964327843106616026, 7.25345373525116928335761342083, 7.82885193609770565758085877155, 8.032357569215232401617509130184