Properties

Label 4-825e2-1.1-c1e2-0-8
Degree $4$
Conductor $680625$
Sign $1$
Analytic cond. $43.3972$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s − 9-s + 2·11-s + 5·16-s + 12·29-s − 16·31-s − 3·36-s − 4·41-s + 6·44-s − 2·49-s + 8·59-s + 12·61-s + 3·64-s + 8·79-s + 81-s + 12·89-s − 2·99-s + 4·101-s + 4·109-s + 36·116-s + 3·121-s − 48·124-s + 127-s + 131-s + 137-s + 139-s − 5·144-s + ⋯
L(s)  = 1  + 3/2·4-s − 1/3·9-s + 0.603·11-s + 5/4·16-s + 2.22·29-s − 2.87·31-s − 1/2·36-s − 0.624·41-s + 0.904·44-s − 2/7·49-s + 1.04·59-s + 1.53·61-s + 3/8·64-s + 0.900·79-s + 1/9·81-s + 1.27·89-s − 0.201·99-s + 0.398·101-s + 0.383·109-s + 3.34·116-s + 3/11·121-s − 4.31·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.416·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(680625\)    =    \(3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(43.3972\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 680625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.013204906\)
\(L(\frac12)\) \(\approx\) \(3.013204906\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59894708919633338728836753681, −10.19827260779541492414597944516, −9.555443656409105116442124256140, −9.216227997030175190811964392102, −8.731712903125441223769712013187, −8.234062251810906359382240114906, −7.902016678713036797508885615016, −7.28333173292208514000135672280, −6.92888766118018441161434480736, −6.62075853550757221784196120429, −6.25940605281211111235736647426, −5.50583698078919530729031551332, −5.41211465666534224643436194700, −4.58884225367745366365122857165, −3.98217339862346779260223284124, −3.33165441182062053373742244392, −3.01455761281709906487139113814, −2.12216472826106110222686091145, −1.88885768745628063733273141121, −0.856711915194970839414152836025, 0.856711915194970839414152836025, 1.88885768745628063733273141121, 2.12216472826106110222686091145, 3.01455761281709906487139113814, 3.33165441182062053373742244392, 3.98217339862346779260223284124, 4.58884225367745366365122857165, 5.41211465666534224643436194700, 5.50583698078919530729031551332, 6.25940605281211111235736647426, 6.62075853550757221784196120429, 6.92888766118018441161434480736, 7.28333173292208514000135672280, 7.902016678713036797508885615016, 8.234062251810906359382240114906, 8.731712903125441223769712013187, 9.216227997030175190811964392102, 9.555443656409105116442124256140, 10.19827260779541492414597944516, 10.59894708919633338728836753681

Graph of the $Z$-function along the critical line