Properties

Label 4-825e2-1.1-c1e2-0-19
Degree $4$
Conductor $680625$
Sign $-1$
Analytic cond. $43.3972$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s − 2·9-s + 5·11-s + 12-s − 3·16-s − 5·23-s − 5·27-s + 5·31-s + 5·33-s − 2·36-s − 9·37-s + 5·44-s − 5·47-s − 3·48-s − 11·49-s − 20·59-s − 7·64-s − 16·67-s − 5·69-s − 10·71-s + 81-s + 15·89-s − 5·92-s + 5·93-s + 9·97-s − 10·99-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s − 2/3·9-s + 1.50·11-s + 0.288·12-s − 3/4·16-s − 1.04·23-s − 0.962·27-s + 0.898·31-s + 0.870·33-s − 1/3·36-s − 1.47·37-s + 0.753·44-s − 0.729·47-s − 0.433·48-s − 1.57·49-s − 2.60·59-s − 7/8·64-s − 1.95·67-s − 0.601·69-s − 1.18·71-s + 1/9·81-s + 1.58·89-s − 0.521·92-s + 0.518·93-s + 0.913·97-s − 1.00·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(680625\)    =    \(3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(43.3972\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 680625,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + p T^{2} \)
5 \( 1 \)
11$C_2$ \( 1 - 5 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 92 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.067968704912731268715246186950, −7.70629984332701510511846414360, −7.31918762549819813856891142784, −6.56953429526110025820310810710, −6.37943766312733801780826663617, −6.10713077897795158043766563778, −5.38491845367795989335977168293, −4.71699318681551725304329690997, −4.34898679927011385468749545500, −3.68621614289464050729887562005, −3.18967823488865577608601639758, −2.74413397281607218087577881660, −1.84454934666866023488186434514, −1.54968263648409039517177388483, 0, 1.54968263648409039517177388483, 1.84454934666866023488186434514, 2.74413397281607218087577881660, 3.18967823488865577608601639758, 3.68621614289464050729887562005, 4.34898679927011385468749545500, 4.71699318681551725304329690997, 5.38491845367795989335977168293, 6.10713077897795158043766563778, 6.37943766312733801780826663617, 6.56953429526110025820310810710, 7.31918762549819813856891142784, 7.70629984332701510511846414360, 8.067968704912731268715246186950

Graph of the $Z$-function along the critical line