Properties

Label 4-825e2-1.1-c1e2-0-17
Degree $4$
Conductor $680625$
Sign $-1$
Analytic cond. $43.3972$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 2·11-s − 4·16-s + 6·31-s + 5·49-s − 20·59-s − 16·71-s + 81-s − 2·99-s − 7·121-s + 127-s + 131-s + 137-s + 139-s − 4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + 173-s + 8·176-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1/3·9-s − 0.603·11-s − 16-s + 1.07·31-s + 5/7·49-s − 2.60·59-s − 1.89·71-s + 1/9·81-s − 0.201·99-s − 0.636·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + 0.0760·173-s + 0.603·176-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(680625\)    =    \(3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(43.3972\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 680625,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5 \( 1 \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.058393523662442810151785336691, −7.68694241149210797908489644492, −7.21179560055798335877977044693, −6.85149851888661993746065924966, −6.22972559928781728923519750221, −5.96246119083801210366763783939, −5.32141223478937915898886391434, −4.68030062925614308743586913699, −4.53022019502187686189233307009, −3.87790378528872098935767253162, −3.12678120525087102387442898050, −2.68001088282523830558726009141, −2.01587594846694296063040552433, −1.20989352211540992962157344407, 0, 1.20989352211540992962157344407, 2.01587594846694296063040552433, 2.68001088282523830558726009141, 3.12678120525087102387442898050, 3.87790378528872098935767253162, 4.53022019502187686189233307009, 4.68030062925614308743586913699, 5.32141223478937915898886391434, 5.96246119083801210366763783939, 6.22972559928781728923519750221, 6.85149851888661993746065924966, 7.21179560055798335877977044693, 7.68694241149210797908489644492, 8.058393523662442810151785336691

Graph of the $Z$-function along the critical line